Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 7121 to 7130 of 7141

Publication Record

Connections

Autoimmune vasculitis in MRL/Mp-lpr/lpr mice: orthochromatic basophils participate in the development of delayed-type hypersensitivity angiitis.
Moyer CF, Jerome WG, Taylor R, Tulli H, Reinisch CL
(1992) Autoimmunity 12: 159-65
MeSH Terms: Animals, Autoimmune Diseases, Basophils, Hypersensitivity, Delayed, Lymphoproliferative Disorders, Mice, Vasculitis
Show Abstract · Added December 10, 2013
The pathogenesis of autoimmune vasculitis is poorly understood. Understanding the immunologic mechanisms governing this disease requires precise identification of the cells which comprise the lesion. In this report, we have evaluated tissue sections from MRL/lpr mice from 16 to 45 weeks of age, representing all stages of clinical vasculitis. We demonstrate that basophil myelocytes participate in the evolution of the delayed-type hypersensitivity (DTH) response which initiates and perpetuates autoimmune vasculitis in these mice. These findings raise questions regarding the immunologic mechanisms by which basophils develop in this lesion and the interaction of basophils. VSMCs and lymphocytes in vasculitic angiodestruction.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Transforming growth factors and related peptides in gastrointestinal neoplasia.
Coffey RJ, McCutchen CM, Graves-Deal R, Polk WH
(1992) J Cell Biochem Suppl 16G: 111-8
MeSH Terms: Animals, Cell Transformation, Neoplastic, Colon, Colonic Neoplasms, Female, Gastrointestinal Neoplasms, Humans, Male, Mice, Mice, Transgenic, Multigene Family, Proto-Oncogenes, Receptors, Cell Surface, Receptors, Transforming Growth Factor beta, Transforming Growth Factor alpha, Transforming Growth Factor beta
Show Abstract · Added March 27, 2014
Transforming growth factor alpha and beta 1 (TGF alpha and TGF beta 1) are representative members of two distinct and expanding families of polypeptide growth factors. TGF alpha is an epithelial cell mitogen, whereas TGF beta 1 inhibits epithelial cell growth; the role of these factors in contributing to the transformed phenotype is uncertain. Steady state mRNA expression for these growth factors and their receptors in a panel of human colon cancers and adjacent normal mucosa is presented. Based in part on results from transgenic mice in which TGF alpha is selectively overproduced in the mammary gland, a possible role for TGF alpha as a tumor promoter in the process of transformation is discussed.
1 Communities
1 Members
0 Resources
16 MeSH Terms
p120, a novel substrate of protein tyrosine kinase receptors and of p60v-src, is related to cadherin-binding factors beta-catenin, plakoglobin and armadillo.
Reynolds AB, Herbert L, Cleveland JL, Berg ST, Gaut JR
(1992) Oncogene 7: 2439-45
MeSH Terms: 3T3 Cells, Amino Acid Sequence, Animals, Armadillo Domain Proteins, Base Sequence, Cadherins, Cell Adhesion Molecules, Cloning, Molecular, Cytoskeletal Proteins, DNA, DNA Probes, Desmoplakins, Drosophila, Drosophila Proteins, Gene Library, Humans, Insect Hormones, Mice, Molecular Sequence Data, Oncogene Protein pp60(v-src), Phosphoproteins, Polymerase Chain Reaction, Protein-Tyrosine Kinases, Proteins, Receptors, Cell Surface, Sequence Homology, Amino Acid, Sequence Homology, Nucleic Acid, Substrate Specificity, Trans-Activators, Transcription Factors, Xenopus, Xenopus Proteins, beta Catenin, gamma Catenin
Show Abstract · Added March 5, 2014
A novel protein tyrosine kinase (PTK) substrate, p120, has been previously implicated in ligand-induced signaling through the epidermal growth factor, platelet-derived growth factor and colony-stimulating factor 1 receptors, and in cell transformation by p60v-src. We have isolated a near full-length cDNA encoding murine p120. The encoded protein lacks significant homology with any reported protein, but it contains four copies of an imperfect 42 amino acid repeat that occurs 12.5 times in the protein encoded by Drosophila armadillo (arm), and its direct homologs, human plakoglobin (plak) and Xenopus laevis beta-catenin (beta-cat). The presence of this motif implies that p120 may share at least one aspect of its function with the arm protein and its homologs.
1 Communities
1 Members
0 Resources
34 MeSH Terms
Purification and characterization of a transcription factor which appears to regulate cAMP responsiveness of the human CYP21B gene.
Kagawa N, Waterman MR
(1992) J Biol Chem 267: 25213-9
MeSH Terms: Animals, Base Sequence, Binding Sites, Cell Line, Cyclic AMP, Deoxyribonuclease I, Gene Expression Regulation, Enzymologic, Genes, HeLa Cells, Humans, Kinetics, Mice, Molecular Sequence Data, Nuclear Proteins, Oligodeoxyribonucleotides, RNA, Messenger, Regulatory Sequences, Nucleic Acid, Steroid 21-Hydroxylase, Transcription Factors
Show Abstract · Added February 12, 2015
A unique cAMP regulatory sequence, -129/-96 base pairs (bp), associated with the gene encoding human cytochrome P450C21 (CYP21B) binds a nuclear protein designated ASP, as described previously (Kagawa, N., and Waterman, M. R. (1991) J. Biol. Chem. 266, 11199-11204). This putative transcription factor required for cAMP-dependent transcription of the human CYP21B gene has been purified from the nuclear extracts of mouse Y1 cells by using sequence-specific DNA-affinity chromatography. The purified ASP is 78 kDa as estimated by SDS-polyacrylamide gel electrophoresis and binds to its specific recognition site, -126/-113-bp CACTCTGTGGGCGG, which has been demonstrated to be the minimum cAMP regulatory sequence of the human CYP21B gene. To characterize ASP more precisely, an antibody was raised against the 78-kDa protein. This antibody led to a supershift of the DNA.ASP complex on gel shift analysis and inhibition of in vitro transcription promoted by the ASP binding sequence, thereby indicating that ASP is a 78-kDa transcription factor. Upon DNase I footprinting experiments, ASP showed a characteristic footprint which very closely resembles but is distinct from that of Sp1 which also occupies a binding site within -129/-96 bp. Furthermore, the addition of purified ASP enhanced the mRNA synthesis promoted by the minimum cAMP regulatory sequence in a cell-free transcription system using HeLa cell extracts, whereas added Sp1 does not. These results indicate that ASP is a primary transcription factor for the cAMP-dependent regulation of the human CYP21B gene.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Maximal serum stimulation of the c-fos serum response element requires both the serum response factor and a novel binding factor, SRE-binding protein.
Boulden AM, Sealy LJ
(1992) Mol Cell Biol 12: 4769-83
MeSH Terms: 3T3 Cells, Animals, Avian Sarcoma Viruses, Base Sequence, Binding Sites, Blood, Cell Line, Chick Embryo, Cross Reactions, DNA, DNA-Binding Proteins, Enhancer Elements, Genetic, Mice, Molecular Sequence Data, Mutagenesis, Site-Directed, Nuclear Proteins, Repetitive Sequences, Nucleic Acid, Serum Response Factor
Show Abstract · Added March 5, 2014
We have previously reported on the presence of a CArG motif at -100 in the Rous sarcoma virus long terminal repeat which binds an avian nuclear protein termed enhancer factor III (EFIII) (A. Boulden and L. Sealy, Virology 174:204-216, 1990). By all analyses, EFIII protein appears to be the avian homolog of the serum response factor (SRF). In this study, we identify a second CArG motif (EFIIIB) in the Rous sarcoma virus long terminal repeat enhancer at -162 and show only slightly lower binding affinity of the EFIII/SRF protein for this element in comparison with c-fos serum response element (SRE) and EFIII DNAs. Although all three elements bind the SRF with similar affinities, serum induction mediated by the c-fos SRE greatly exceeds that effected by the EFIII or EFIIIB sequence. We postulated that this difference in serum inducibility might result from binding of factors other than the SRF which occurs on the c-fos SRE but not on EFIII and EFIIIB sequences. Upon closer inspection of nuclear proteins which bind the c-fos SRE in chicken embryo fibroblast and NIH 3T3 nuclear extracts, we discovered another binding factor, SRE-binding protein (SRE BP), which fails to recognize EFIII DNA with high affinity. Competition analyses, methylation interference, and site-directed mutagenesis have determined that the SRE BP binding element overlaps and lies immediately 3' to the CArG box of the c-fos SRE. Mutation of the c-fos SRE so that it no longer binds SRE BP reduces serum inducibility to 33% of the wild-type level. Conversely, mutation of the EFIII sequence so that it binds SRE BP with high affinity results in a 400% increase in serum induction, with maximal stimulation equaling that of the c-fos SRE. We conclude that binding of both SRE BP and SRF is required for maximal serum induction. The SRE BP binding site coincides with the recently reported binding site for rNF-IL6 on the c-fos SRE. Nonetheless, we show that SRE BP is distinct from rNF-IL6, and identification of this novel factor is being pursued.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Expression of an endogenous murine leukemia virus-related proviral sequence is androgen regulated and primarily restricted to the epididymis/vas deferens and oviduct/uterus.
Cornwall GA, Orgebin-Crist MC, Hann SR
(1992) Biol Reprod 47: 665-75
MeSH Terms: Androgens, Animals, Base Sequence, DNA, Viral, Epididymis, Female, Gene Expression, Genes, Viral, Genitalia, Leukemia Virus, Murine, Male, Mice, Mice, Inbred C57BL, Molecular Sequence Data, Ovarian Follicle, Proviruses, Uterus, Vas Deferens
Show Abstract · Added March 5, 2014
A cDNA representing a 5.2-kb defective, endogenous murine leukemia proviral sequence (EPI-EPS) was isolated from a C57BL/6 mouse cDNA epididymal library. Northern blot analysis demonstrated that EPI-EPS was predominantly expressed in the C57BL/6 mouse epididymis and vas deferens with 10-fold lower expression in the seminal vesicle, kidney, and submandibular gland. Analysis of tissues from other inbred strains of mice as well as the wild mouse, Mus musculus musculus, showed a similar pattern of tissue expression. EPI-EPS expression was also highly androgen regulated in both the reproductive and nonreproductive tissues of the C57BL/6 strain. However, a differential response to testosterone replacement was observed between tissues. Expression of EPI-EPS mRNA in the epididymis and vas deferens exhibited only a partial recovery to precastration levels after testosterone replacement; in the kidney and submandibular gland there was a complete recovery of EPI-EPS expression. Finally, EPI-EPS expression was also highly restricted in the female tissues, with expression limited to the oviduct and uterus. EPI-EPS, however, was not estrogen regulated in the female. These results suggest that a proviral sequence, EPI-EPS, is expressed in M. m. musculus and several inbred strains of mice due to its integration near a highly tissue-specific and androgen-regulated genetic locus.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Oxygen radical-dependent epoxidation of (7S,8S)-dihydroxy-7,8-dihydrobenzo[a]pyrene in mouse skin in vivo. Stimulation by phorbol esters and inhibition by antiinflammatory steroids.
Ji C, Marnett LJ
(1992) J Biol Chem 267: 17842-8
MeSH Terms: 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide, Adenosine Triphosphate, Animals, Biotransformation, Carcinogens, Cytochrome P-450 Enzyme System, DNA, Diterpenes, Dose-Response Relationship, Drug, Female, Fluocinolone Acetonide, Isoenzymes, Kinetics, Mice, Mice, Inbred Strains, Oxidation-Reduction, Peroxidase, Skin, Terpenes, Tetradecanoylphorbol Acetate
Show Abstract · Added March 5, 2014
(7S,8S)--Dihydroxy--7,8--dihydrobenzo[a]pyrene ((+)-BP-7,8-diol) is epoxidized to (7S,8R)-dihydroxy-(9S,10R)-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene ((+)-syn-BPDE) by cytochrome P-450 isoenzymes and to (7S,8R)-dihydroxy-(9R,10S)-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene ((-)-anti-BPDE) by peroxyl free radicals. 32P postlabeling analysis of the diastereomeric BPDE-DNA adducts was used to investigate the pathways of (+)-BP-7,8-diol oxidation in mouse skin in vivo. The pattern of deoxynucleoside 3',5'-bisphosphate adducts in epidermal scrapings from female CD-1 mice indicated that cytochrome P-450 was the major oxidant. Similar results were obtained when the tumor-promoting phorbol ester tetradecanoylphorbolacetate (TPA) was coadministered with (+)-BP-7,8-diol. However, when animals were pretreated with TPA 24 h before coadministration of TPA and (+)-BP-7,8-diol, the pattern of BPDE-DNA adducts indicated that peroxyl radicals made a major contribution to (+)-BP-7,8-diol epoxidation. Peroxyl radical-dependent epoxidation was maximal when the time between the two TPA administrations was 24-72 h. No increase in (-)-anti-BPDE-DNA was observed when the non-tumor-promoting phorbol ester 4-O-methyl-TPA was substituted for TPA. The calcium ionophore A23187 stimulated peroxyl radical generation when substituted for the first, but not the second, TPA treatment. The antiinflammatory steroid fluocinolone acetonide inhibited (-)-anti-BPDE-DNA adduct formation when coadministered with the first but not the second TPA treatment. These findings demonstrate the existence of two independent pathways of metabolic activation of (+)-BP-7,8-diol in mouse epidermis, one dependent on cytochrome P-450 and the other dependent on peroxyl free radicals. The results also suggest that repetitive topical administration of tumor-promoting phorbol esters remodels epidermal metabolism leading to a significant increase in free radical generation.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Selective disruption of genes expressed in totipotent embryonal stem cells.
von Melchner H, DeGregori JV, Rayburn H, Reddy S, Friedel C, Ruley HE
(1992) Genes Dev 6: 919-27
MeSH Terms: Alcohol Oxidoreductases, Animals, Base Sequence, Blotting, Northern, Cell Line, Chimera, Female, Genetic Vectors, Kanamycin Kinase, Male, Mice, Molecular Sequence Data, Mutagenesis, Insertional, Phosphotransferases, Promoter Regions, Genetic, Recombinant Fusion Proteins, Stem Cells
Show Abstract · Added May 29, 2014
Two retrovirus promoter trap vectors (U3His and U3Neo) have been used to disrupt genes expressed in totipotent murine embryonal stem (ES) cells. Selection in L-histidinol or G418 produced clones in which the coding sequences for histidinol-dehydrogenase or neomycin-phosphotransferase were fused to sequences in or near the 5' exons of expressed genes, including one in the developmentally regulated REX-1 gene. Five of seven histidinol-resistant clones and three of three G418-resistant clones generated germ-line chimeras. A total of four disrupted genes have been passed to the germ line, of which two resulted in embryonic lethalities when bred to homozygosity. The ability to screen large numbers of recombinant ES cell clones for significant mutations, both in vitro and in vivo, circumvents genetic limitations imposed by the size and long generation time of mice and will facilitate a functional analysis of the mouse genome.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Distinctive patterns of hyperplasia in transgenic mice with mouse mammary tumor virus transforming growth factor-alpha. Characterization of mammary gland and skin proliferations.
Halter SA, Dempsey P, Matsui Y, Stokes MK, Graves-Deal R, Hogan BL, Coffey RJ
(1992) Am J Pathol 140: 1131-46
MeSH Terms: Animals, Cysts, Hyperplasia, Immunohistochemistry, Mammary Glands, Animal, Mammary Tumor Virus, Mouse, Mice, Mice, Transgenic, Microscopy, Electron, Nucleic Acid Hybridization, RNA, Messenger, Radioimmunoassay, Skin, Transforming Growth Factor alpha
Show Abstract · Added March 27, 2014
Eight lines of transgenic mice expressing a mouse mammary tumor virus (MMTV) human transforming growth factor-alpha (TGF alpha) fusion gene were established. Three lines with distinctive phenotypes are presented. All have proliferative changes of the mammary gland. One line has sebaceous gland hyperplasia of the skin. Five histologic patterns of mammary gland hyperplasia based on two of these lines were identified: cystic hyperplasia, solid hyperplasia, dysplasia, adenoma, and adenocarcinoma. Human TGF alpha mRNA and protein were produced in all patterns but appeared reduced in solid hyperplasia, dysplasia, and adenocarcinoma. TGF alpha immunoreactivity in the mammary tissue, cystic fluid, and serum did not show significant differences; hyperplasia developed in 65% of multiparous mice and 45% of virgin mice by 12 months of age. Adenocarcinoma developed in 40% of multiparous mice and 30% of virgin mice by 16 months of age. These transgenic lines may provide useful models of mammary and sebaceous gland hyperplasia analogous to human disease.
1 Communities
1 Members
0 Resources
14 MeSH Terms
Vesicular stomatitis virus antigenic octapeptide N52-59 is anchored into the groove of the H-2Kb molecule by the side chains of three amino acids and the main-chain atoms of the amino terminus.
Shibata K, Imarai M, van Bleek GM, Joyce S, Nathenson SG
(1992) Proc Natl Acad Sci U S A 89: 3135-9
MeSH Terms: Amino Acid Sequence, Animals, Antigen-Presenting Cells, Antigens, Viral, Binding Sites, H-2 Antigens, Mice, Molecular Sequence Data, Mutagenesis, Site-Directed, Peptides, Protein Binding, Structure-Activity Relationship, T-Lymphocytes, Cytotoxic, Vesicular stomatitis Indiana virus
Show Abstract · Added October 2, 2015
This study describes an analysis of the interaction of individual amino acid residues of the vesicular stomatitis virus (VSV) nucleocapsid antigenic octapeptide (N52-59; Arg-Gly-Tyr-Val-Tyr-Gln-Gly-Leu) with the H-2Kb molecule and T-cell receptors (TCRs). Tyr-3, Tyr-5, and Leu-8 were the positions in the peptide found to be H-2Kb contact residues by analyzing single alanine-substituted peptides in a competition assay with a Kb-restricted antigenic nonapeptide of Sendai virus. Arg-1, Gly-2, Val-4, Gln-6, and Gly-7 of the peptide were identified as putative TCR contact residues by testing the peptide analogs for their capacity to sensitize targets for VSV-specific cytolytic T-lymphocyte clones. The octamer N52-59 was the optimal length of the peptide required for binding to Kb. This peptide length requirement and the finding of an irregular interspersing of major histocompatibility complex and TCR contact residues are most consistent with the conclusion that the peptide is in an extended conformation in the antigen binding groove. Furthermore, data on binding of truncated peptides show that, although the Arg-1 side chain has been assigned as a TCR contact residue, the main-chain atoms of the N-terminal amino group are most likely involved in interacting with the major histocompatibility complex molecule. A panel of H-2Kb point mutants was constructed to explore the effect of altered amino acid residues on the binding of N52-59. Mutants with amino acid substitutions along the floor of the groove all bound the VSV peptide but modulated its interaction with Kb, apparently causing subtle changes in the spatial arrangement of some specific TCR contact residues in the peptide.
0 Communities
1 Members
0 Resources
14 MeSH Terms