Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 51 to 57 of 57

Publication Record

Connections

The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair.
Alfaro MP, Pagni M, Vincent A, Atkinson J, Hill MF, Cates J, Davidson JM, Rottman J, Lee E, Young PP
(2008) Proc Natl Acad Sci U S A 105: 18366-71
MeSH Terms: Animals, Cell Line, Enzyme-Linked Immunosorbent Assay, Heart, Humans, Membrane Proteins, Mesenchymal Stem Cells, Mice, Mice, Inbred C57BL, Regeneration, Wound Healing
Show Abstract · Added March 15, 2013
Cell-based therapies, using multipotent mesenchymal stem cells (MSCs) for organ regeneration, are being pursued for cardiac disease, orthopedic injuries and biomaterial fabrication. The molecular pathways that regulate MSC-mediated regeneration or enhance their therapeutic efficacy are, however, poorly understood. We compared MSCs isolated from MRL/MpJ mice, known to demonstrate enhanced regenerative capacity, to those from C57BL/6 (WT) mice. Compared with WT-MSCs, MRL-MSCs demonstrated increased proliferation, in vivo engraftment, experimental granulation tissue reconstitution, and tissue vascularity in a murine model of repair stimulation. The MRL-MSCs also reduced infarct size and improved function in a murine myocardial infarct model compared with WT-MSCs. Genomic and functional analysis indicated a downregulation of the canonical Wnt pathway in MRL-MSCs characterized by significant up-regulation of specific secreted frizzled-related proteins (sFRPs). Specific knockdown of sFRP2 by shRNA in MRL-MSCs decreased their proliferation and their engraftment in and the vascular density of MRL-MSC-generated experimental granulation tissue. These results led us to generate WT-MSCs overexpressing sFRP2 (sFRP2-MSCs) by retroviral transduction. sFRP2-MSCs maintained their ability for multilineage differentiation in vitro and, when implanted in vivo, recapitulated the MRL phenotype. Peri-infarct intramyocardial injection of sFRP2-MSCs resulted in enhanced engraftment, vascular density, reduced infarct size, and increased cardiac function after myocardial injury in mice. These findings implicate sFRP2 as a key molecule for the biogenesis of a superior regenerative phenotype in MSCs.
1 Communities
2 Members
0 Resources
11 MeSH Terms
Directed differentiation of bone marrow derived mesenchymal stem cells into bladder urothelium.
Anumanthan G, Makari JH, Honea L, Thomas JC, Wills ML, Bhowmick NA, Adams MC, Hayward SW, Matusik RJ, Brock JW, Pope JC
(2008) J Urol 180: 1778-83
MeSH Terms: Animals, Bone Marrow Cells, Cell Differentiation, Cells, Cultured, Female, Male, Mesenchymal Stem Cells, Mice, Mice, Nude, Pregnancy, Rats, Rats, Sprague-Dawley, Transplantation, Heterologous, Urinary Bladder, Urothelium
Show Abstract · Added April 7, 2010
PURPOSE - We have previously reported that embryonic rat bladder mesenchyma has the appropriate inductive signals to direct pluripotent mouse embryonic stem cells toward endodermal derived urothelium and develop mature bladder tissue. We determined whether nonembryonic stem cells, specifically bone marrow derived mesenchymal stem cells, could serve as a source of pluripotent or multipotent progenitor cells.
MATERIALS AND METHODS - Epithelium was separated from the mesenchymal shells of embryonic day 14 rat bladders. Mesenchymal stem cells were isolated from mouse femoral and tibial bone marrow. Heterospecific recombinant xenografts were created by combining the embryonic rat bladder mesenchyma shells with mesenchymal stem cells and grafting them into the renal subcapsular space of athymic nude mice. Grafts were harvested at time points of up to 42 days and stained for urothelial and stromal differentiation.
RESULTS - Histological examination of xenografts comprising mouse mesenchymal stem cells and rat embryonic rat bladder mesenchyma yielded mature bladder structures showing normal microscopic architecture as well as proteins confirming functional characteristics. Specifically the induced urothelium expressed uroplakin, a highly selective marker of urothelial differentiation. These differentiated bladder structures demonstrated appropriate alpha-smooth muscle actin staining. Finally, Hoechst staining of the xenografts revealed nuclear architecture consistent with a mouse mesenchymal stem cell origin of the urothelium, supporting differentiated development of these cells.
CONCLUSIONS - In the appropriate signaling environment bone marrow derived mesenchymal stem cells can undergo directed differentiation toward endodermal derived urothelium and develop into mature bladder tissue in a tissue recombination model. This model serves as an important tool for the study of bladder development with long-term application toward cell replacement therapies in the future.
1 Communities
2 Members
0 Resources
15 MeSH Terms
Adult lung side population cells have mesenchymal stem cell potential.
Martin J, Helm K, Ruegg P, Varella-Garcia M, Burnham E, Majka S
(2008) Cytotherapy 10: 140-51
MeSH Terms: Adipocytes, Aging, Animals, Cell Differentiation, Cell Lineage, Cell Separation, Chondrocytes, Clone Cells, Lung, Mesenchymal Stem Cells, Mice, Osteocytes, Telomerase
Show Abstract · Added August 4, 2015
BACKGROUND - The development of stem cell therapy for pulmonary diseases remains a challenge. Many diverse cell types reside within the lung and a common stem cell has not yet been identified. A basic understanding of lung stem cell fate during disease may prove important for drug intervention as well as autologous therapies. Niches for resident mesenchymal stem cells (MSC) have been identified in many adult tissues and more recently in the lung. We present data to confirm the observation that non-hematopoietic CD45(neg) lung side population (SP) cells contain MSC, single cells capable of multilineage differentiation. METHODS We carried these observations forward by analyzing the MSC potential of single-cell clones, as well as their chromosomal stability and telomerase activity.
RESULTS - The expression of MSC markers was characterized in mouse CD45(neg) lung SP by flow cytometry on freshly isolated or cultured clonal populations. The karyotype of these cells was subsequently assayed by banding analysis, and telomerase activity was assessed using quantitative polymerase chain reaction. MSC differentiation potential was confirmed by the characteristic ability of single-cell clones to differentiate into cells of three mesenchymal lineages, chondrocytes, adipocytes and osteocytes. Differentiation was confirmed by histochemical analysis. All analyzed populations of CD45(neg) lung SP expressed mesenchymal markers (CD44, CD90, CD105, CD106, CD73 and Sca-I) and lacked hematopoietic markers (CD45, c-kit, CD11b, CD34 and CD14). The cultured and clonal CD45(neg) lung SP had normal chromosomal structures and expressed high levels of telomerase. After being expanded and cultured in differentiation medium, all populations of CD45(neg) lung SP demonstrated adipogenic, osteogenic and chrondrogenic potential. Adult CD45(neg) lung SP cells are a source of MSC.
DISCUSSION - In defining this tissue-specific stem cell population in the lung, we are now better able to clarify a potential role for them in lung diseases.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Markers of epithelial-mesenchymal transition and epithelial differentiation in sarcomatoid carcinoma: utility in the differential diagnosis with sarcoma.
Cates JM, Dupont WD, Barnes JW, Edmunds HS, Fasig JH, Olson SJ, Black CC
(2008) Appl Immunohistochem Mol Morphol 16: 251-62
MeSH Terms: Biomarkers, Tumor, Carcinoma, Transitional Cell, Cell Differentiation, Diagnosis, Differential, Epithelial Cells, Gene Expression, Humans, Immunohistochemistry, Keratins, Mesenchymal Stem Cells, Sarcoma, Snail Family Transcription Factors, Transcription Factors, Twist-Related Protein 1
Show Abstract · Added March 15, 2013
The distinction between sarcomatoid carcinoma (SC) and bona fide sarcoma can be difficult using conventional immunohistochemical markers. Epithelial-mesenchymal transition (EMT) has been proposed as a histogenetic mechanism for the development of SC. Expression of selected markers of EMT (Twist and Slug) was compared with other markers of epithelial differentiation in SC and spindle cell sarcoma to determine the utility of these antigens in this differential diagnosis. Twenty-seven cases of SC (excluding those of gynecologic origin) were stained by immunohistochemistry for cytokeratins (AE1/AE3, 5D3, CK5/6, and 34betaE12), p63, claudin-1, claudin-7, epithelial cadherin, placental cadherin, epithelial cell adhesion molecule/epithelial-specific antigen, 14-3-3sigma, Twist, and Slug. A comparison group of 21 spindle or pleomorphic spindle cell sarcomas was also studied. Immunohistochemical stains were scored in a semiquantitative manner and subsequent exploratory analyses were performed using logistic regression and chi2 tests. Only cytokeratin AE1/AE3 specifically labeled SC in a statistically significant manner. Other epithelial-specific markers tested did not distinguish SC from sarcoma primarily owing to low sensitivity. However, when positive, immunostains such as CK5/6, membranous epithelial cadherin, and nuclear p63 may aid in the distinction of SC from sarcoma. EMT markers were expressed in most cases of both SC and sarcoma, and were not useful in making a differential diagnosis between these neoplasms.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Dissection of the osteogenic effects of laminin-332 utilizing specific LG domains: LG3 induces osteogenic differentiation, but not mineralization.
Klees RF, Salasznyk RM, Ward DF, Crone DE, Williams WA, Harris MP, Boskey A, Quaranta V, Plopper GE
(2008) Exp Cell Res 314: 763-73
MeSH Terms: Calcification, Physiologic, Cell Adhesion, Cell Adhesion Molecules, Cell Differentiation, Cells, Cultured, Core Binding Factor Alpha 1 Subunit, Extracellular Signal-Regulated MAP Kinases, Focal Adhesion Protein-Tyrosine Kinases, Humans, Integrin alpha3beta1, Mesenchymal Stem Cells, Osteoblasts, Peptides, Protein Structure, Tertiary, Sp7 Transcription Factor, Transcription Factors
Show Abstract · Added February 18, 2013
The overall mechanisms governing the role of laminins during osteogenic differentiation of human mesenchymal stem cells (hMSC) are poorly understood. We previously reported that laminin-332 induces an osteogenic phenotype in hMSC and does so through a focal adhesion kinase (FAK) and extracellular signal-related kinase (ERK) dependent pathway. We hypothesized that this is a result of integrin-ECM binding, and that it occurs via the known alpha3 LG3 integrin binding domain of laminin-332. To test this hypothesis we cultured hMSC on several different globular domains of laminin-332. hMSC adhered best to the LG3 domain, and this adhesion maximally activated FAK and ERK within 120 min. Prolonged culturing (8 or 16 days) of hMSC on LG3 led to activation of the osteogenic transcription factor Runx2 and expression of key osteogenic markers (osterix, bone sialoprotein 2, osteocalcin, alkaline phosphatase, extracellular calcium) in hMSC. LG3 domain binding did not increase matrix mineralization, demonstrating that the LG3 domain alone is not sufficient to induce complete osteogenic differentiation in vitro. We conclude that the LG3 domain mediates attachment of hMSC to laminin-332 and that this adhesion recapitulates most, but not all, of the osteogenic differentiation associated with laminin-5 binding to hMSC.
2 Communities
1 Members
0 Resources
16 MeSH Terms
Mice deficient in galectin-1 exhibit attenuated physiological responses to chronic hypoxia-induced pulmonary hypertension.
Case D, Irwin D, Ivester C, Harral J, Morris K, Imamura M, Roedersheimer M, Patterson A, Carr M, Hagen M, Saavedra M, Crossno J, Young KA, Dempsey EC, Poirier F, West J, Majka S
(2007) Am J Physiol Lung Cell Mol Physiol 292: L154-64
MeSH Terms: Animals, Base Sequence, Chronic Disease, DNA Primers, Extracellular Matrix, Galectin 1, Hypertension, Pulmonary, Hypoxia, In Vitro Techniques, Lung, Mesenchymal Stem Cells, Mice, Mice, Knockout, Microcirculation, Muscle, Smooth, Vascular, Sheep, Vascular Resistance
Show Abstract · Added August 4, 2015
Pulmonary hypertension (PH) is characterized by sustained vasoconstriction, with subsequent extracellular matrix (ECM) production and smooth muscle cell (SMC) proliferation. Changes in the ECM can modulate vasoreactivity and SMC contraction. Galectin-1 (Gal-1) is a hypoxia-inducible beta-galactoside-binding lectin produced by vascular, interstitial, epithelial, and immune cells. Gal-1 regulates SMC differentiation, proliferation, and apoptosis via interactions with the ECM, as well as immune system function, and, therefore, likely plays a role in the pathogenesis of PH. We investigated the effects of Gal-1 during hypoxic PH by quantifying 1) Gal-1 expression in response to hypoxia in vitro and in vivo and 2) the effect of Gal-1 gene deletion on the magnitude of the PH response to chronic hypoxia in vivo. By constructing and screening a subtractive library, we found that acute hypoxia increases expression of Gal-1 mRNA in isolated pulmonary mesenchymal cells. In wild-type (WT) mice, Gal-1 immunoreactivity increased after 6 wk of hypoxia. Increased expression of Gal-1 protein was confirmed by quantitative Western analysis. Gal-1 knockout (Gal-1(-/-)) mice showed a decreased PH response, as measured by right ventricular pressure and the ratio of right ventricular to left ventricular + septum wet weight compared with their WT counterparts. However, the number and degree of muscularized vessels increased similarly in WT and Gal-1(-/-) mice. In response to chronic hypoxia, the decrease in factor 8-positive microvessel density was similar in both groups. Vasoreactivity of WT and Gal-1(-/-) mice was tested in vivo and with use of isolated perfused lungs exposed to acute hypoxia. Acute hypoxia caused a significant increase in RV pressure in wild-type and Gal-1(-/-) mice; however, the response of the Gal-1(-/-) mice was greater. These results suggest that Gal-1 influences the contractile response to hypoxia and subsequent remodeling during hypoxia-induced PH, which influences disease progression.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling.
Longobardi L, O'Rear L, Aakula S, Johnstone B, Shimer K, Chytil A, Horton WA, Moses HL, Spagnoli A
(2006) J Bone Miner Res 21: 626-36
MeSH Terms: Animals, Bone Marrow Cells, Chondrocytes, Chondrogenesis, Humans, Insulin-Like Growth Factor I, Mesenchymal Stem Cells, Mice, Signal Transduction, Transforming Growth Factor beta
Show Abstract · Added February 17, 2014
UNLABELLED - A novel role for IGF-I in MSC chondrogenesis was determined. IGF-I effects were evaluated in the presence or absence of TGF-beta signaling by conditionally inactivating the TGF-beta type II receptor. We found that IGF-I had potent chondroinductive actions on MSCs. IGF-I effects were independent from and additive to TGF-beta.
INTRODUCTION - Mesenchymal stem cells (MSCs) can be isolated from adult bone marrow (BM), expanded, and differentiated into several cell types, including chondrocytes. The role of IGF-I in the chondrogenic potential of MSCs is poorly understood. TGF-beta induces MSC chondrogenic differentiation, although its actions are not well defined. The aim of our study was to define the biological role of IGF-I on proliferation, chondrogenic condensation, apoptosis, and differentiation of MSCs into chondrocytes, alone or in combination with TGF-beta and in the presence or absence of TGF-beta signaling.
MATERIALS AND METHODS - Mononuclear adherent stem cells were isolated from mouse BM. Chondrogenic differentiation was induced by culturing high-density MSC pellets in serum- and insulin-free defined medium up to 7 days, with or without IGF-I and/or TGF-beta. We measured thymidine incorporation and stained 2-day-old pellets with TUNEL, cleaved caspase-3, peanut-agglutinin, and N-cadherin. Seven-day-old pellets were measured in size, stained for proteoglycan synthesis, and analyzed for the expression of collagen II and Sox-9 by quantitative real time PCR. We obtained MSCs from mice in which green fluorescent protein (GFP) was under the Collagen2 promoter and determined GFP expression by confocal microscopy. We conditionally inactivated the TGF-beta type II receptor (TbetaRII) in MSCs using a cre-lox system, generating TbetaRII knockout MSCs (RIIKO-MSCs).
RESULTS AND CONCLUSIONS - IGF-I modulated MSC chondrogenesis by stimulating proliferation, regulating cell apoptosis, and inducing expression of chondrocyte markers. IGF-I chondroinductive actions were equally potent to TGF-beta1, and the two growth factors had additive effects. Using RIIKO-MSCs, we showed that IGF-I chondrogenic actions are independent from the TGF-beta signaling. We found that the extracellular signal-related kinase 1/2 mitogen-activated protein kinase (Erk1/2 MAPK) pathway mediated the TGF-beta1 mitogenic response and in part the IGF-I proliferative action. Our data, by showing the role of IGF-I and TGF-beta1 in the critical steps of MSC chondrogenesis, provide critical information to optimize the therapeutic use of MSCs in cartilage disorders.
0 Communities
1 Members
0 Resources
10 MeSH Terms