Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 21 to 25 of 25

Publication Record

Connections

Mispairing of the 8,9-dihydro-8-(N7-guanyl)-9-hydroxy-aflatoxin B1 adduct with deoxyadenosine results in extrusion of the mismatched dA toward the major groove.
Giri I, Johnston DS, Stone MP
(2002) Biochemistry 41: 5462-72
MeSH Terms: Aflatoxin B1, Base Composition, Base Pair Mismatch, DNA Adducts, Deoxyadenosines, Drug Stability, Hot Temperature, Intercalating Agents, Nuclear Magnetic Resonance, Biomolecular, Nucleic Acid Conformation, Nucleic Acid Heteroduplexes, Oligodeoxyribonucleotides, Protons
Show Abstract · Added May 29, 2014
The G --> T transversion is the dominant mutation induced by the cationic trans-8,9-dihydro-8-(N7-guanyl)-9-hydroxy-aflatoxin B(1) adduct. The structure of d(ACATC(AFB)GATCT).d(AGATAGATGT), in which the cationic adduct was mismatched with deoxyadenosine, was refined using molecular dynamics calculations restrained by NOE data and dihedral restraints obtained from NMR spectroscopy. Restrained molecular dynamics calculations refined structures with pairwise rmsd <1 A and a sixth root R1x factor between the refined structure and NOE data of 10.5 x 10-2. The mismatched duplex existed in a single conformation at neutral pH. The aflatoxin moiety intercalated above the 5' face of the modified (AFB)G. The mismatched dA was in the anti conformation about the glycosyl bond. It extruded toward the major groove and did not participate in hydrogen bonding with (AFB)G. The structure was compared with that of d(ACATCGATCT).d(AGATAGATGT) containing the corresponding unmodified G.A mismatch and with d(ACATC(AFB)GATCT).d(AGATCGATGT) containing the aflatoxin lesion in the correctly paired (AFB)G.C context. The correctly paired oligodeoxynucleotide exhibited Watson-Crick-type geometry at the (AFB)G.C pair. It melted at higher temperature than the mismatched (AFB)G.A duplex. The unmodified mismatched G.A duplex exhibited spectral line broadening at neutral pH, suggesting a mixture of conformations. It exhibited a lower melting temperature than did the mismatched (AFB)G.A duplex. These differences correlated with replication bypass experiments performed in vitro utilizing DNA polymerase I exo- [Johnston, D. S., and Stone, M. P. (2000) Chem. Res. Toxicol. 13, 1158-1164]. Those experiments showed that correct insertion of dC opposite (AFB)G blocked replication by the enzyme, whereas incorrect insertion of dA opposite (AFB)G allowed full-length replication of the adducted template strand.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia.
Fleisher AS, Esteller M, Tamura G, Rashid A, Stine OC, Yin J, Zou TT, Abraham JM, Kong D, Nishizuka S, James SP, Wilson KT, Herman JG, Meltzer SJ
(2001) Oncogene 20: 329-35
MeSH Terms: Adaptor Proteins, Signal Transducing, Adenoma, Base Pair Mismatch, Carcinoma, Carrier Proteins, Case-Control Studies, DNA Methylation, Gastric Mucosa, Humans, Microsatellite Repeats, MutL Protein Homolog 1, Neoplasm Proteins, Nuclear Proteins, Polymerase Chain Reaction, Promoter Regions, Genetic, Stomach Neoplasms
Show Abstract · Added March 5, 2014
A significant portion of gastric cancers exhibit defective DNA mismatch repair, manifested as microsatellite instability (MSI). High-frequency MSI (MSI-H) is associated with hypermethylation of the human mut-L homologue 1 (hMLH1) mismatch repair gene promoter and diminished hMLH1 expression in advanced gastric cancers. However, the relationship between MSI and hMLH1 hypermethylation has not been studied in early gastric neoplasms. We therefore investigated hMLH1 hypermethylation, hMLH1 expression and MSI in a group of early gastric cancers and gastric adenomas. Sixty-four early gastric neoplasms were evaluated, comprising 28 adenomas, 18 mucosal carcinomas, and 18 carcinomas with superficial submucosal invasion but clear margins. MSI was evaluated using multiplex fluorescent PCR to amplify loci D2S123, D5S346, D17S250, BAT 25 and BAT 26. Methylation-specific PCR was performed to determine the methylation status of hMLH1. In two hypermethylated MSI-H cancers, hMLH1 protein expression was also evaluated by immunohistochemistry. Six of sixty-four early gastric lesions were MSI-H, comprising 1 adenoma, 4 mucosal carcinomas, and 1 carcinoma with superficial submucosal invasion. Two lesions (one adenoma and one mucosal carcinoma) demonstrated low-frequency MSI (MSI-L). The remaining 56 neoplasms were MSI-stable (MSI-S). Six of six MSI-H, one of two MSI-L, and none of thirty MSI-S lesions showed hMLH1 hypermethylation (P<0.001). Diminished hMLH1 protein expression was demonstrated by immunohistochemistry in two of two MSI-H hypermethylated lesions. hMLH1 promoter hypermethylation is significantly associated with MSI and diminished hMLH1 expression in early gastric neoplasms. MSI and hypermethylation-associated inactivation of hMLH1 are more prevalent in early gastric cancers than in gastric adenomas. Thus, hypermethylation-associated inactivation of the hMLH1 gene can occur early in gastric carcinogenesis.
0 Communities
1 Members
0 Resources
16 MeSH Terms
The relative contribution of adduct blockage and DNA repair on template utilization during replication of 1,N2-propanodeoxyguanosine and pyrimido.
Fink SP, Marnett LJ
(2001) Mutat Res 485: 209-18
MeSH Terms: Bacteriophage M13, Base Pair Mismatch, DNA Adducts, DNA Repair, DNA Replication, Deoxyguanosine, Genome, Viral, Mutagenesis, Purines, Pyrimidines
Show Abstract · Added March 5, 2014
The role of replication blockage by the exocyclic DNA adducts propanodeoxyguanosine (PdG) and pyrimido[1,2-alpha]purin-10(3H)-one (M1G) was determined through the use of site-specifically adducted M13MB102 genomes containing a C:C-mismatch approximately 3000 base-pairs from the site of adduct incorporation. Genomes containing either dG, PdG, or M1G positioned at site 6256 of the (-)-strand were transformed into repair-proficient and repair-deficient Escherichia coli strains and the percent template utilization was determined by hybridization analysis. Unmodified genomes containing a C:C-mismatch resulted in a percent template utilization of approximately 60 and 40% for the (-)- and (+)-strands, respectively. Transformation of PdG- or M(1)G-adducted genomes resulted in approximately a 60-40% and 50-50% (-)-strand to (+)-strand ratio, respectively, indicating that PdG and M(1)G are negligible blocks to replication in repair-proficient E. coli. This is in contrast to previous studies using (PdG:T)- and (M1G:T)-mismatched M13MB102 genomes, which resulted in a majority of the replication events using the unadducted (+)-strand and suggested that both adducts were significant blocks to replication [J. Biol. Chem. 272 (1997) 11434; Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 8652]. The C:C-mismatch results, though, indicate that the large strand bias detected in the earlier studies is due to repair of the adducts and resynthesis of the (-)-strand using the (+)-strand as a template for repair synthesis. Transformation of adducted C:C-mismatched genomes into E. coli strains deficient in nucleotide excision repair did result in an increased strand bias with only approximately 20 and 34% of the replication events using the (-)-strand for PdG- and M1G-adducted genomes, respectively. The increased strand bias indicates the importance of nucleotide excision repair in the removal of PdG and M1G.
0 Communities
1 Members
0 Resources
10 MeSH Terms
A novel host cell reactivation assay to assess homologous recombination capacity in human cancer cell lines.
Slebos RJ, Taylor JA
(2001) Biochem Biophys Res Commun 281: 212-9
MeSH Terms: Base Pair Mismatch, DNA Repair, Flow Cytometry, Genes, BRCA1, Genes, p53, Green Fluorescent Proteins, Humans, Karyotyping, Luminescent Proteins, Models, Genetic, Molecular Biology, Mutation, Neoplasms, Plasmids, Recombination, Genetic, Transfection, Tumor Cells, Cultured
Show Abstract · Added March 5, 2014
Repair of DNA double-strand breaks (DSB) is essential for cell viability and genome stability. Homologous recombination repair plays an important role in DSB repair and impairment of this repair mechanism may lead to loss of genomic integrity, which is one of the hallmarks of cancer. Recent research has shown that the tumor suppressor genes p53 and BRCA1 and -2 are involved in the proper control of homologous recombination, suggesting a role of this type of repair in human cancer. We developed a novel assay based on recombination between two Green Fluorescent Protein (GFP) sequences in transiently transfected plasmid DNA. The plasmid construct contains an intact, emission-shifted, "blue" variant of GFP (BFP), with a 300 nucleotide stretch of homology to a nonfunctional copy of GFP. In the absence of homologous recombination only BFP is present, but homologous recombination can create a functional GFP. The homologous regions in the plasmid were constructed in both the direct and the inverted orientation of transcription to detect possible differences in the recombination mechanisms involved. A panel of human tumor cell lines was chosen on the basis of genetic background and chromosome integrity and tested for homologous recombination using this assay. The panel included cell lines with varying levels of karyotypic abnormalities, isogenic cell lines with normal and mutant p53, isogenic cell lines with or without DNA mismatch repair, BRCA1 and -2 mutant cell lines, and the lymphoma cell line DT40. With this assay, the observed differences between cell lines with the lowest and highest levels of recombination were about 100-fold. Increased levels of recombination were associated with mutant p53, whereas a low level of recombination was found in the BRCA1 mutant cell line. In the cell line HT1080TG, a mutagenized derivative of HT1080 with two mutant alleles of p53, high levels of recombination were found with the direct orientation but not with the inverted orientation plasmid. No difference in recombination was detected between two isogenic cell lines that only differed in DNA mismatch repair capability. We conclude that this assay can detect differences in homologous recombination capacity in cultured cell lines and that these differences follow the patterns that would be expected from the different genotypes of these cell lines. Future application in normal cells may be useful to identify genetic determinants controlling genomic integrity or to detect differences in DNA repair capacity in individuals.
0 Communities
1 Members
0 Resources
17 MeSH Terms
MutS recognition of exocyclic DNA adducts that are endogenous products of lipid oxidation.
Johnson KA, Mierzwa ML, Fink SP, Marnett LJ
(1999) J Biol Chem 274: 27112-8
MeSH Terms: Adenosine Triphosphatases, Bacterial Proteins, Base Pair Mismatch, Binding, Competitive, DNA Methylation, DNA Repair, DNA, Bacterial, DNA-Binding Proteins, Escherichia coli, Escherichia coli Proteins, Lipid Metabolism, Models, Chemical, MutS DNA Mismatch-Binding Protein, Oxidation-Reduction, Transfection
Show Abstract · Added March 5, 2014
The ability of the methyl-directed mismatch repair system to recognize and repair the exocyclic adducts propanodeoxyguanosine (PdG) and pyrimido[1,2-alpha]purin-10(3H)-one (M(1)G), the major adduct derived from the endogenous mutagen malondialdehyde, has been assessed both in vivo and in vitro. Both adducts were site-specifically incorporated into M13MB102 DNA, and the adducted genomes were electroporated into wild-type or mutS-deficient Escherichia coli strains. A decrease in mutations caused by both adducts was observed in mutS-deficient strains, suggesting that MutS was binding to the adducts and blocking repair by nucleotide excision repair. This hypothesis was supported by the differences in mutation frequency observed when hemimethylated genomes containing PdG on the (-)-strand were electroporated into a uvrA(-) strain. The ability of purified MutS to bind to PdG- or M(1)G-containing 31-mer duplexes in vitro was assessed using both surface plasmon resonance and gel shift assays. MutS bound to M(1)G:T-containing duplexes with similar affinity to a G:T mismatch but less strongly to M(1)G:C- and PdG-containing duplexes. Dissociation from each of the adduct-containing duplexes occurred at a faster rate than from a G:T mismatch. The present results indicate that MutS can bind to exocyclic adducts resulting from endogenous DNA damage and trigger their removal by mismatch repair or protect them from removal by nucleotide excision repair.
0 Communities
1 Members
0 Resources
15 MeSH Terms