Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 790

Publication Record

Connections

TRAF6 Mediates Basal Activation of NF-κB Necessary for Hematopoietic Stem Cell Homeostasis.
Fang J, Muto T, Kleppe M, Bolanos LC, Hueneman KM, Walker CS, Sampson L, Wellendorf AM, Chetal K, Choi K, Salomonis N, Choi Y, Zheng Y, Cancelas JA, Levine RL, Starczynowski DT
(2018) Cell Rep 22: 1250-1262
MeSH Terms: Animals, Enzyme Activation, Hematopoiesis, Hematopoietic Stem Cells, Homeostasis, I-kappa B Kinase, Mice, Mice, Transgenic, NF-kappa B, Signal Transduction, TNF Receptor-Associated Factor 6
Show Abstract · Added February 26, 2018
Basal nuclear factor κB (NF-κB) activation is required for hematopoietic stem cell (HSC) homeostasis in the absence of inflammation; however, the upstream mediators of basal NF-κB signaling are less well understood. Here, we describe TRAF6 as an essential regulator of HSC homeostasis through basal activation of NF-κB. Hematopoietic-specific deletion of Traf6 resulted in impaired HSC self-renewal and fitness. Gene expression, RNA splicing, and molecular analyses of Traf6-deficient hematopoietic stem/progenitor cells (HSPCs) revealed changes in adaptive immune signaling, innate immune signaling, and NF-κB signaling, indicating that signaling via TRAF6 in the absence of cytokine stimulation and/or infection is required for HSC function. In addition, we established that loss of IκB kinase beta (IKKβ)-mediated NF-κB activation is responsible for the major hematopoietic defects observed in Traf6-deficient HSPC as deletion of IKKβ similarly resulted in impaired HSC self-renewal and fitness. Taken together, TRAF6 is required for HSC homeostasis by maintaining a minimal threshold level of IKKβ/NF-κB signaling.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche.
Wang X, Page-McCaw A
(2018) Development 145:
MeSH Terms: Animals, Animals, Genetically Modified, Bone Morphogenetic Proteins, Cadherins, Cell Count, Cell Differentiation, Cell Lineage, Cell Survival, Drosophila Proteins, Drosophila melanogaster, Female, Germ Cells, Ligands, Models, Biological, Ovary, Signal Transduction, Stem Cell Niche, Wnt Proteins
Show Abstract · Added March 20, 2018
Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal.
© 2018. Published by The Company of Biologists Ltd.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Cooperative function of Pdx1 and Oc1 in multipotent pancreatic progenitors impacts postnatal islet maturation and adaptability.
Kropp PA, Dunn JC, Carboneau BA, Stoffers DA, Gannon M
(2018) Am J Physiol Endocrinol Metab 314: E308-E321
MeSH Terms: Adaptation, Physiological, Animals, Animals, Newborn, Cell Differentiation, Cells, Cultured, Diet, High-Fat, Gene Expression Regulation, Developmental, Glucose, Hepatocyte Nuclear Factor 6, Homeodomain Proteins, Insulin-Secreting Cells, Islets of Langerhans, Male, Mice, Mice, Transgenic, Multipotent Stem Cells, Organogenesis, Trans-Activators
Show Abstract · Added April 15, 2019
The transcription factors pancreatic and duodenal homeobox 1 (Pdx1) and onecut1 (Oc1) are coexpressed in multipotent pancreatic progenitors (MPCs), but their expression patterns diverge in hormone-expressing cells, with Oc1 expression being extinguished in the endocrine lineage and Pdx1 being maintained at high levels in β-cells. We previously demonstrated that cooperative function of these two factors in MPCs is necessary for proper specification and differentiation of pancreatic endocrine cells. In those studies, we observed a persistent decrease in expression of the β-cell maturity factor MafA. We therefore hypothesized that Pdx1 and Oc1 cooperativity in MPCs impacts postnatal β-cell maturation and function. Here our model of Pdx1-Oc1 double heterozygosity was used to investigate the impact of haploinsufficiency for both of these factors on postnatal β-cell maturation, function, and adaptability. Examining mice at postnatal day (P) 14, we observed alterations in pancreatic insulin content in both Pdx1 heterozygotes and double heterozygotes. Gene expression analysis at this age revealed significantly decreased expression of many genes important for glucose-stimulated insulin secretion (e.g., Glut2, Pcsk1/2, Abcc8) exclusively in double heterozygotes. Analysis of P14 islets revealed an increase in the number of mixed islets in double heterozygotes. We predicted that double-heterozygous β-cells would have an impaired ability to respond to stress. Indeed, we observed that β-cell proliferation fails to increase in double heterozygotes in response to either high-fat diet or placental lactogen. We thus report here the importance of cooperation between regulatory factors early in development for postnatal islet maturation and adaptability.
0 Communities
1 Members
0 Resources
MeSH Terms
Differential Expression of NF2 in Neuroepithelial Compartments Is Necessary for Mammalian Eye Development.
Moon KH, Kim HT, Lee D, Rao MB, Levine EM, Lim DS, Kim JW
(2018) Dev Cell 44: 13-28.e3
MeSH Terms: Adaptor Proteins, Signal Transducing, Animals, Cell Lineage, Cell Polarity, Cells, Cultured, Cilia, Gene Expression Regulation, Developmental, Humans, Hyperplasia, Mice, Mice, Knockout, Neural Stem Cells, Neurofibromin 2, Organogenesis, Phenotype, Phosphoproteins, Protein-Serine-Threonine Kinases, Retinal Pigment Epithelium, Transcription Factors
Show Abstract · Added February 14, 2018
The optic neuroepithelial continuum of vertebrate eye develops into three differentially growing compartments: the retina, the ciliary margin (CM), and the retinal pigment epithelium (RPE). Neurofibromin 2 (Nf2) is strongly expressed in slowly expanding RPE and CM compartments, and the loss of mouse Nf2 causes hyperplasia in these compartments, replicating the ocular abnormalities seen in human NF2 patients. The hyperplastic ocular phenotypes were largely suppressed by heterozygous deletion of Yap and Taz, key targets of the Nf2-Hippo signaling pathway. We also found that, in addition to feedback transcriptional regulation of Nf2 by Yap/Taz in the CM, activation of Nf2 expression by Mitf in the RPE and suppression by Sox2 in retinal progenitor cells are necessary for the differential growth of the corresponding cell populations. Together, our findings reveal that Nf2 is a key player that orchestrates the differential growth of optic neuroepithelial compartments during vertebrate eye development.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Apical polarization and lumenogenesis: The apicosome sheds new light.
Romero-Morales AI, Ortolano NA, Gama V
(2017) J Cell Biol 216: 3891-3893
MeSH Terms: Germ Layers, Humans, Morphogenesis, Pluripotent Stem Cells
Show Abstract · Added March 14, 2018
Establishment of apico-basal polarity is critical for the lumenal epiblast-like morphogenesis of human pluripotent stem cells (hPSCs). In this issue, Taniguchi et al. (2017. https://doi.org/10.1083.jcb201704085) describe a structure called the apicosome, generated in single hPSCs, that allows them to self-organize and form the lumenal epiblast-like stage.
© 2017 Romero-Morales et al.
0 Communities
1 Members
0 Resources
4 MeSH Terms
RHOA GTPase Controls YAP-Mediated EREG Signaling in Small Intestinal Stem Cell Maintenance.
Liu M, Zhang Z, Sampson L, Zhou X, Nalapareddy K, Feng Y, Akunuru S, Melendez J, Davis AK, Bi F, Geiger H, Xin M, Zheng Y
(2017) Stem Cell Reports 9: 1961-1975
MeSH Terms: Adaptor Proteins, Signal Transducing, Animals, Cell Differentiation, Cell Proliferation, Epiregulin, Epithelium, Gene Expression Regulation, Developmental, Intestine, Small, Mice, Mice, Knockout, Morphogenesis, Phosphoproteins, Stem Cells, Wnt Signaling Pathway, beta Catenin, rho GTP-Binding Proteins
Show Abstract · Added February 7, 2018
RHOA, a founding member of the Rho GTPase family, is critical for actomyosin dynamics, polarity, and morphogenesis in response to developmental cues, mechanical stress, and inflammation. In murine small intestinal epithelium, inducible RHOA deletion causes a loss of epithelial polarity, with disrupted villi and crypt organization. In the intestinal crypts, RHOA deficiency results in reduced cell proliferation, increased apoptosis, and a loss of intestinal stem cells (ISCs) that mimic effects of radiation damage. Mechanistically, RHOA loss reduces YAP signaling of the Hippo pathway and affects YAP effector epiregulin (EREG) expression in the crypts. Expression of an active YAP (S112A) mutant rescues ISC marker expression, ISC regeneration, and ISC-associated Wnt signaling, but not defective epithelial polarity, in RhoA knockout mice, implicating YAP in RHOA-regulated ISC function. EREG treatment or active β-catenin Catnb mutant expression rescues the RhoA KO ISC phenotypes. Thus, RHOA controls YAP-EREG signaling to regulate intestinal homeostasis and ISC regeneration.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Space Invaders: Brain Tumor Exploitation of the Stem Cell Niche.
Sinnaeve J, Mobley BC, Ihrie RA
(2018) Am J Pathol 188: 29-38
MeSH Terms: Animals, Brain Neoplasms, Humans, Neural Stem Cells, Neurogenesis, Stem Cell Niche
Show Abstract · Added April 10, 2019
Increasing evidence indicates that the adult neurogenic niche of the ventricular-subventricular zone (V-SVZ), beyond serving as a potential site of origin, affects the outcome of malignant brain cancers. Glioma contact with this niche predicts worse prognosis, suggesting a supportive role for the V-SVZ environment in tumor initiation or progression. In this review, we describe unique components of the V-SVZ that may permit or promote tumor growth within the region. Cell-cell interactions, soluble factors, and extracellular matrix composition are discussed, and the role of the niche in future therapies is explored. The purpose of this review is to highlight niche intrinsic factors that may promote or support malignant cell growth and maintenance, and point out how we might leverage these features to improve patient outcome.
Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation.
Lee KM, Giltnane JM, Balko JM, Schwarz LJ, Guerrero-Zotano AL, Hutchinson KE, Nixon MJ, Estrada MV, Sánchez V, Sanders ME, Lee T, Gómez H, Lluch A, Pérez-Fidalgo JA, Wolf MM, Andrejeva G, Rathmell JC, Fesik SW, Arteaga CL
(2017) Cell Metab 26: 633-647.e7
MeSH Terms: Animals, Cell Line, Tumor, Drug Resistance, Neoplasm, Female, Humans, Mice, Nude, Mitochondria, Myeloid Cell Leukemia Sequence 1 Protein, Neoplastic Stem Cells, Oxidative Phosphorylation, Proto-Oncogene Proteins c-myc, Reactive Oxygen Species, Triple Negative Breast Neoplasms
Show Abstract · Added March 14, 2018
Most patients with advanced triple-negative breast cancer (TNBC) develop drug resistance. MYC and MCL1 are frequently co-amplified in drug-resistant TNBC after neoadjuvant chemotherapy. Herein, we demonstrate that MYC and MCL1 cooperate in the maintenance of chemotherapy-resistant cancer stem cells (CSCs) in TNBC. MYC and MCL1 increased mitochondrial oxidative phosphorylation (mtOXPHOS) and the generation of reactive oxygen species (ROS), processes involved in maintenance of CSCs. A mutant of MCL1 that cannot localize in mitochondria reduced mtOXPHOS, ROS levels, and drug-resistant CSCs without affecting the anti-apoptotic function of MCL1. Increased levels of ROS, a by-product of activated mtOXPHOS, led to the accumulation of HIF-1α. Pharmacological inhibition of HIF-1α attenuated CSC enrichment and tumor initiation in vivo. These data suggest that (1) MYC and MCL1 confer resistance to chemotherapy by expanding CSCs via mtOXPHOS and (2) targeting mitochondrial respiration and HIF-1α may reverse chemotherapy resistance in TNBC.
Copyright © 2017. Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Heterozygous loss of TSC2 alters p53 signaling and human stem cell reprogramming.
Armstrong LC, Westlake G, Snow JP, Cawthon B, Armour E, Bowman AB, Ess KC
(2017) Hum Mol Genet 26: 4629-4641
MeSH Terms: Adolescent, Adult, Alleles, Cellular Reprogramming, Child, Child, Preschool, Female, Fibroblasts, Genes, p53, Heterozygote, Humans, Induced Pluripotent Stem Cells, Infant, Loss of Heterozygosity, Male, Mutation, RNA, Small Interfering, Signal Transduction, TOR Serine-Threonine Kinases, Tuberous Sclerosis, Tuberous Sclerosis Complex 1 Protein, Tuberous Sclerosis Complex 2 Protein, Tumor Suppressor Protein p53, Tumor Suppressor Proteins
Show Abstract · Added April 11, 2018
Tuberous sclerosis complex (TSC) is a pediatric disorder of dysregulated growth and differentiation caused by loss of function mutations in either the TSC1 or TSC2 genes, which regulate mTOR kinase activity. To study aberrations of early development in TSC, we generated induced pluripotent stem cells using dermal fibroblasts obtained from patients with TSC. During validation, we found that stem cells generated from TSC patients had a very high rate of integration of the reprogramming plasmid containing a shRNA against TP53. We also found that loss of one allele of TSC2 in human fibroblasts is sufficient to increase p53 levels and impair stem cell reprogramming. Increased p53 was also observed in TSC2 heterozygous and homozygous mutant human stem cells, suggesting that the interactions between TSC2 and p53 are consistent across cell types and gene dosage. These results support important contributions of TSC2 heterozygous and homozygous mutant cells to the pathogenesis of TSC and the important role of p53 during reprogramming.
© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
24 MeSH Terms
Differentiation of Human Pluripotent Stem Cells into Functional Lung Alveolar Epithelial Cells.
Jacob A, Morley M, Hawkins F, McCauley KB, Jean JC, Heins H, Na CL, Weaver TE, Vedaie M, Hurley K, Hinds A, Russo SJ, Kook S, Zacharias W, Ochs M, Traber K, Quinton LJ, Crane A, Davis BR, White FV, Wambach J, Whitsett JA, Cole FS, Morrisey EE, Guttentag SH, Beers MF, Kotton DN
(2017) Cell Stem Cell 21: 472-488.e10
MeSH Terms: Base Sequence, Cell Differentiation, Cell Line, Cell Proliferation, Cell Self Renewal, Cell Separation, Epithelial Cells, Gene Expression Profiling, Genes, Reporter, Humans, Lung Diseases, Models, Biological, Pluripotent Stem Cells, Pulmonary Alveoli, Pulmonary Surfactants, Thyroid Nuclear Factor 1, Time Factors, Wnt Proteins, Wnt Signaling Pathway
Show Abstract · Added April 1, 2019
Lung alveoli, which are unique to air-breathing organisms, have been challenging to generate from pluripotent stem cells (PSCs) in part because there are limited model systems available to provide the necessary developmental roadmaps for in vitro differentiation. Here we report the generation of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, from human PSCs. Using multicolored fluorescent reporter lines, we track and purify human SFTPC+ alveolar progenitors as they emerge from endodermal precursors in response to stimulation of Wnt and FGF signaling. Purified PSC-derived SFTPC+ cells form monolayered epithelial "alveolospheres" in 3D cultures without the need for mesenchymal support, exhibit self-renewal capacity, and display additional AEC2 functional capacities. Footprint-free CRISPR-based gene correction of PSCs derived from patients carrying a homozygous surfactant mutation (SFTPB) restores surfactant processing in AEC2s. Thus, PSC-derived AEC2s provide a platform for disease modeling and future functional regeneration of the distal lung.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms