Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 464

Publication Record

Connections

Energy metabolism couples hepatocyte integrin-linked kinase to liver glucoregulation and postabsorptive responses of mice in an age-dependent manner.
Trefts E, Hughey CC, Lantier L, Lark DS, Boyd KL, Pozzi A, Zent R, Wasserman DH
(2019) Am J Physiol Endocrinol Metab 316: E1118-E1135
MeSH Terms: Age Factors, Animals, Blood Glucose, Cell Differentiation, Cell Respiration, Energy Metabolism, Gene Knockout Techniques, Glucose, Glucose Tolerance Test, Hepatocytes, Homeostasis, Inflammation, Insulin, Insulin Resistance, Liver, Liver Cirrhosis, Mice, Obesity, Protein-Serine-Threonine Kinases
Show Abstract · Added March 26, 2019
Integrin-linked kinase (ILK) is a critical intracellular signaling node for integrin receptors. Its role in liver development is complex, as ILK deletion at E10.5 (before hepatocyte differentiation) results in biochemical and morphological differences that resolve as mice age. Nevertheless, mice with ILK depleted specifically in hepatocytes are protected from the hepatic insulin resistance during obesity. Despite the potential importance of hepatocyte ILK to metabolic health, it is unknown how ILK controls hepatic metabolism or glucoregulation. The present study tested the role of ILK in hepatic metabolism and glucoregulation by deleting it specifically in hepatocytes, using a cre-lox system that begins expression at E15.5 (after initiation of hepatocyte differentiation). These mice develop the most severe morphological and glucoregulatory abnormalities at 6 wk, but these gradually resolve with age. After identifying when the deletion of ILK caused a severe metabolic phenotype, in depth studies were performed at this time point to define the metabolic programs that coordinate control of glucoregulation that are regulated by ILK. We show that 6-wk-old ILK-deficient mice have higher glucose tolerance and decreased net glycogen synthesis. Additionally, ILK was shown to be necessary for transcription of mitochondrial-related genes, oxidative metabolism, and maintenance of cellular energy status. Thus, ILK is required for maintaining hepatic transcriptional and metabolic programs that sustain oxidative metabolism, which are required for hepatic maintenance of glucose homeostasis.
1 Communities
1 Members
0 Resources
19 MeSH Terms
Human Semaphorin 3 Variants Link Melanocortin Circuit Development and Energy Balance.
van der Klaauw AA, Croizier S, Mendes de Oliveira E, Stadler LKJ, Park S, Kong Y, Banton MC, Tandon P, Hendricks AE, Keogh JM, Riley SE, Papadia S, Henning E, Bounds R, Bochukova EG, Mistry V, O'Rahilly S, Simerly RB, INTERVAL, UK10K Consortium, Minchin JEN, Barroso I, Jones EY, Bouret SG, Farooqi IS
(2019) Cell 176: 729-742.e18
MeSH Terms: Adolescent, Adult, Animals, Body Weight, Cell Line, Child, Child, Preschool, Disease Models, Animal, Eating, Energy Metabolism, Female, Genetic Variation, Homeostasis, Humans, Hypothalamus, Leptin, Male, Melanocortins, Mice, Mice, Inbred C57BL, Middle Aged, Nerve Tissue Proteins, Neurons, Obesity, Receptors, Cell Surface, Semaphorins, Young Adult, Zebrafish
Show Abstract · Added April 11, 2019
Hypothalamic melanocortin neurons play a pivotal role in weight regulation. Here, we examined the contribution of Semaphorin 3 (SEMA3) signaling to the development of these circuits. In genetic studies, we found 40 rare variants in SEMA3A-G and their receptors (PLXNA1-4; NRP1-2) in 573 severely obese individuals; variants disrupted secretion and/or signaling through multiple molecular mechanisms. Rare variants in this set of genes were significantly enriched in 982 severely obese cases compared to 4,449 controls. In a zebrafish mutagenesis screen, deletion of 7 genes in this pathway led to increased somatic growth and/or adiposity demonstrating that disruption of Semaphorin 3 signaling perturbs energy homeostasis. In mice, deletion of the Neuropilin-2 receptor in Pro-opiomelanocortin neurons disrupted their projections from the arcuate to the paraventricular nucleus, reduced energy expenditure, and caused weight gain. Cumulatively, these studies demonstrate that SEMA3-mediated signaling drives the development of hypothalamic melanocortin circuits involved in energy homeostasis.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
28 MeSH Terms
SIRT2 knockout exacerbates insulin resistance in high fat-fed mice.
Lantier L, Williams AS, Hughey CC, Bracy DP, James FD, Ansari MA, Gius D, Wasserman DH
(2018) PLoS One 13: e0208634
MeSH Terms: Acetylation, Animals, Diet, High-Fat, Energy Metabolism, Insulin, Insulin Resistance, Liver, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Mitochondria, Muscle, Skeletal, Phosphorylation, Proto-Oncogene Proteins c-akt, Sirtuin 2
Show Abstract · Added January 8, 2019
The NAD+-dependent deacetylase SIRT2 is unique amongst sirtuins as it is effective in the cytosol, as well as the mitochondria. Defining the role of cytosolic acetylation state in specific tissues is difficult since even physiological effects at the whole body level are unknown. We hypothesized that genetic SIRT2 knockout (KO) would lead to impaired insulin action, and that this impairment would be worsened in HF fed mice. Insulin sensitivity was tested using the hyperinsulinemic-euglycemic clamp in SIRT2 KO mice and WT littermates. SIRT2 KO mice exhibited reduced skeletal muscle insulin-induced glucose uptake compared to lean WT mice, and this impairment was exacerbated in HF SIRT2 KO mice. Liver insulin sensitivity was unaffected in lean SIRT2 KO mice. However, the insulin resistance that accompanies HF-feeding was worsened in SIRT2 KO mice. It was notable that the effects of SIRT2 KO were largely disassociated from cytosolic acetylation state, but were closely linked to acetylation state in the mitochondria. SIRT2 KO led to an increase in body weight that was due to increased food intake in HF fed mice. In summary, SIRT2 deletion in vivo reduces muscle insulin sensitivity and contributes to liver insulin resistance by a mechanism that is unrelated to cytosolic acetylation state. Mitochondrial acetylation state and changes in feeding behavior that result in increased body weight correspond to the deleterious effects of SIRT2 KO on insulin action.
2 Communities
1 Members
0 Resources
16 MeSH Terms
Regulation of energy rheostasis by the melanocortin-3 receptor.
Ghamari-Langroudi M, Cakir I, Lippert RN, Sweeney P, Litt MJ, Ellacott KLJ, Cone RD
(2018) Sci Adv 4: eaat0866
MeSH Terms: Animals, Energy Metabolism, Feeding Behavior, Female, Homeostasis, Inhibitory Postsynaptic Potentials, Male, Mice, Mice, Inbred C57BL, Neurons, Receptor, Melanocortin, Type 3
Show Abstract · Added August 31, 2018
Like most homeostatic systems, adiposity in mammals is defended between upper and lower boundary conditions. While leptin and melanocortin-4 receptor (MC4R) signaling are required for defending energy set point, mechanisms controlling upper and lower homeostatic boundaries are less well understood. In contrast to the MC4R, deletion of the MC3R does not produce measurable hyperphagia or hypometabolism under normal conditions. However, we demonstrate that MC3R is required bidirectionally for controlling responses to external homeostatic challenges, such as caloric restriction or calorie-rich diet. MC3R is also required for regulated excursion from set point, or rheostasis, during pregnancy. Further, we demonstrate a molecular mechanism: MC3R provides regulatory inputs to melanocortin signaling, acting presynaptically on agouti-related protein neurons to regulate γ-aminobutyric acid release onto anorexigenic MC4R neurons, exerting boundary control on the activity of MC4R neurons. Thus, the MC3R is a critical regulator of boundary controls on melanocortin signaling, providing rheostatic control on energy storage.
1 Communities
0 Members
0 Resources
11 MeSH Terms
Increases in bioactive lipids accompany early metabolic changes associated with β-cell expansion in response to short-term high-fat diet.
Seferovic MD, Beamish CA, Mosser RE, Townsend SE, Pappan K, Poitout V, Aagaard KM, Gannon M
(2018) Am J Physiol Endocrinol Metab 315: E1251-E1263
MeSH Terms: Animals, Blood Glucose, Cell Proliferation, Diabetes Mellitus, Type 2, Diet, High-Fat, Insulin Resistance, Insulin-Secreting Cells, Lipid Metabolism, Lipids, Liver, Male, Mice, Muscle, Skeletal, Obesity
Show Abstract · Added April 15, 2019
Pancreatic β-cell expansion is a highly regulated metabolic adaptation to increased somatic demands, including obesity and pregnancy; adult β cells otherwise rarely proliferate. We previously showed that high-fat diet (HFD) feeding induces mouse β-cell proliferation in less than 1 wk in the absence of insulin resistance. Here we metabolically profiled tissues from a short-term HFD β-cell expansion mouse model to identify pathways and metabolite changes associated with β-cell proliferation. Mice fed HFD vs. chow diet (CD) showed a 14.3% increase in body weight after 7 days; β-cell proliferation increased 1.75-fold without insulin resistance. Plasma from 1-wk HFD-fed mice induced β-cell proliferation ex vivo. The plasma, as well as liver, skeletal muscle, and bone, were assessed by LC and GC mass-spectrometry for global metabolite changes. Of the 1,283 metabolites detected, 159 showed significant changes [false discovery rate (FDR) < 0.1]. The majority of changes were in liver and muscle. Pathway enrichment analysis revealed key metabolic changes in steroid synthesis and lipid metabolism, including free fatty acids and other bioactive lipids. Other important enrichments included changes in the citric acid cycle and 1-carbon metabolism pathways implicated in DNA methylation. Although the minority of changes were observed in bone and plasma (<20), increased p-cresol sulfate was increased >4 fold in plasma (the largest increase in all tissues), and pantothenate (vitamin B) decreased >2-fold. The results suggest that HFD-mediated β-cell expansion is associated with complex, global metabolite changes. The finding could be a significant insight into Type 2 diabetes pathogenesis and potential novel drug targets.
0 Communities
1 Members
0 Resources
14 MeSH Terms
HDAC11 suppresses the thermogenic program of adipose tissue via BRD2.
Bagchi RA, Ferguson BS, Stratton MS, Hu T, Cavasin MA, Sun L, Lin YH, Liu D, Londono P, Song K, Pino MF, Sparks LM, Smith SR, Scherer PE, Collins S, Seto E, McKinsey TA
(2018) JCI Insight 3:
MeSH Terms: Adipose Tissue, Brown, Adipose Tissue, White, Adult, Aged, Aged, 80 and over, Animals, Diet, High-Fat, Disease Models, Animal, Energy Metabolism, Epigenesis, Genetic, Fatty Liver, Female, Gene Expression Regulation, Histone Deacetylases, Humans, Insulin Resistance, Male, Mice, Mice, Knockout, Middle Aged, Obesity, Thermogenesis, Transcription Factors
Show Abstract · Added July 22, 2020
Little is known about the biological function of histone deacetylase 11 (HDAC11), which is the lone class IV HDAC. Here, we demonstrate that deletion of HDAC11 in mice stimulates brown adipose tissue (BAT) formation and beiging of white adipose tissue (WAT). Consequently, HDAC11-deficient mice exhibit enhanced thermogenic potential and, in response to high-fat feeding, attenuated obesity, improved insulin sensitivity, and reduced hepatic steatosis. Ex vivo and cell-based assays revealed that HDAC11 catalytic activity suppresses the BAT transcriptional program, in both the basal state and in response to β-adrenergic receptor signaling, through a mechanism that is dependent on physical association with BRD2, a bromodomain and extraterminal (BET) acetyl-histone-binding protein. These findings define an epigenetic pathway for the regulation of energy homeostasis and suggest the potential for HDAC11-selective inhibitors for the treatment of obesity and diabetes.
0 Communities
1 Members
0 Resources
MeSH Terms
Response of Secondary Metabolism of Hypogean Actinobacterial Genera to Chemical and Biological Stimuli.
Covington BC, Spraggins JM, Ynigez-Gutierrez AE, Hylton ZB, Bachmann BO
(2018) Appl Environ Microbiol 84:
MeSH Terms: Actinobacteria, Bacterial Proteins, Biological Products, Caves, Genome, Bacterial, Magnetic Resonance Spectroscopy, Metabolomics, Multigene Family, Phylogeny, Polyketides, Secondary Metabolism
Show Abstract · Added March 26, 2019
Microorganisms within microbial communities respond to environmental challenges by producing biologically active secondary metabolites, yet the majority of these small molecules remain unidentified. We have previously demonstrated that secondary metabolite biosynthesis in actinomycetes can be activated by model environmental chemical and biological stimuli, and metabolites can be identified by comparative metabolomics analyses under different stimulus conditions. Here, we surveyed the secondary metabolite productivity of a group of 20 phylogenetically diverse actinobacteria isolated from hypogean (cave) environments by applying a battery of stimuli consisting of exposure to antibiotics, metals, and mixed microbial culture. Comparative metabolomics was used to reveal secondary metabolite responses from stimuli. These analyses revealed substantial changes in global metabolomic dynamics, with over 30% of metabolomic features increasing more than 10-fold under at least one stimulus condition. Selected features were isolated and identified via nuclear magnetic resonance (NMR), revealing several known secondary metabolite families, including the tetarimycins, aloesaponarins, hypogeamicins, actinomycins, and propeptins. One prioritized metabolite was identified to be a previously unreported aminopolyol polyketide, funisamine, produced by a cave isolate of when exposed to mixed culture. The production of funisamine was most significantly increased in mixed culture with species. The biosynthetic gene cluster responsible for the production of funisamine was identified via genomic sequencing of the producing strain, sp. strain KDCAGE35, which facilitated a deduction of its biosynthesis. Together, these data demonstrate that comparative metabolomics can reveal the stimulus-induced production of natural products from diverse microbial phylogenies. Microbial secondary metabolites are an important source of biologically active and therapeutically relevant small molecules. However, much of this active molecular diversity is challenging to access due to low production levels or difficulty in discerning secondary metabolites within complex microbial extracts prior to isolation. Here, we demonstrate that ecological stimuli increase secondary metabolite production in phylogenetically diverse actinobacteria isolated from understudied hypogean environments. Additionally, we show that comparative metabolomics linking stimuli to metabolite response data can effectively reveal secondary metabolites within complex biological extracts. This approach highlighted secondary metabolites in almost all observed natural product classes, including low-abundance analogs of biologically relevant metabolites, as well as a new linear aminopolyol polyketide, funisamine. This study demonstrates the generality of activating stimuli to potentiate secondary metabolite production across diverse actinobacterial genera.
Copyright © 2018 American Society for Microbiology.
0 Communities
1 Members
0 Resources
11 MeSH Terms
CalR: A Web-Based Analysis Tool for Indirect Calorimetry Experiments.
Mina AI, LeClair RA, LeClair KB, Cohen DE, Lantier L, Banks AS
(2018) Cell Metab 28: 656-666.e1
MeSH Terms: Analysis of Variance, Animals, Calorimetry, Indirect, Cloud Computing, Data Visualization, Energy Metabolism, Humans, Linear Models, Mice, Obesity, Pulmonary Gas Exchange, Reproducibility of Results, Thermogenesis, Web Browser, Weight Loss, Workflow
Show Abstract · Added May 16, 2019
We report a web-based tool for analysis of experiments using indirect calorimetry to measure physiological energy balance. CalR simplifies the process to import raw data files, generate plots, and determine the most appropriate statistical tests for interpretation. Analysis using the generalized linear model (which includes ANOVA and ANCOVA) allows for flexibility in interpreting diverse experimental designs, including those of obesity and thermogenesis. Users also may produce standardized output files for an experiment that can be shared and subsequently re-evaluated using CalR. This framework will provide the transparency necessary to enhance consistency, rigor, and reproducibility. The CalR analysis software will greatly increase the speed and efficiency with which metabolic experiments can be organized, analyzed per accepted norms, and reproduced and will likely become a standard tool for the field. CalR is accessible at https://CalRapp.org/.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Glycine -methyltransferase deletion in mice diverts carbon flux from gluconeogenesis to pathways that utilize excess methionine cycle intermediates.
Hughey CC, Trefts E, Bracy DP, James FD, Donahue EP, Wasserman DH
(2018) J Biol Chem 293: 11944-11954
MeSH Terms: Animals, Carbon, Citric Acid Cycle, Energy Metabolism, Fatty Liver, Gene Deletion, Gluconeogenesis, Glucose, Glycine N-Methyltransferase, Liver, Male, Metabolic Flux Analysis, Methionine, Mice, Mice, Knockout, S-Adenosylmethionine
Show Abstract · Added March 26, 2019
Glycine -methyltransferase (GNMT) is the most abundant liver methyltransferase regulating the availability of the biological methyl donor, -adenosylmethionine (SAM). Moreover, GNMT has been identified to be down-regulated in hepatocellular carcinoma (HCC). Despite its role in regulating SAM levels and association of its down-regulation with liver tumorigenesis, the impact of reduced GNMT on metabolic reprogramming before the manifestation of HCC has not been investigated in detail. Herein, we used H/C metabolic flux analysis in conscious, unrestrained mice to test the hypothesis that the absence of GNMT causes metabolic reprogramming. GNMT-null (KO) mice displayed a reduction in blood glucose that was associated with a decline in both hepatic glycogenolysis and gluconeogenesis. The reduced gluconeogenesis was due to a decrease in liver gluconeogenic precursors, citric acid cycle fluxes, and anaplerosis and cataplerosis. A concurrent elevation in both hepatic SAM and metabolites of SAM utilization pathways was observed in the KO mice. Specifically, the increase in metabolites of SAM utilization pathways indicated that hepatic polyamine synthesis and catabolism, transsulfuration, and lipogenesis pathways were increased in the KO mice. Of note, these pathways utilize substrates that could otherwise be used for gluconeogenesis. Also, this metabolic reprogramming occurs before the well-documented appearance of HCC in GNMT-null mice. Together, these results indicate that GNMT deletion promotes a metabolic shift whereby nutrients are channeled away from glucose formation toward pathways that utilize the elevated SAM.
© 2018 Hughey et al.
1 Communities
0 Members
0 Resources
MeSH Terms
Regulation of Insulin Receptor Pathway and Glucose Metabolism by CD36 Signaling.
Samovski D, Dhule P, Pietka T, Jacome-Sosa M, Penrose E, Son NH, Flynn CR, Shoghi KI, Hyrc KL, Goldberg IJ, Gamazon ER, Abumrad NA
(2018) Diabetes 67: 1272-1284
MeSH Terms: Animals, CD36 Antigens, CHO Cells, Carbohydrate Metabolism, Cells, Cultured, Cricetinae, Cricetulus, Diabetes Mellitus, Type 2, Female, Glucose, Humans, Insulin, Insulin Resistance, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Muscle, Skeletal, Receptor, Insulin, Signal Transduction
Show Abstract · Added May 26, 2018
During reduced energy intake, skeletal muscle maintains homeostasis by rapidly suppressing insulin-stimulated glucose utilization. Loss of this adaptation is observed with deficiency of the fatty acid transporter CD36. A similar loss is also characteristic of the insulin-resistant state where CD36 is dysfunctional. To elucidate what links CD36 to muscle glucose utilization, we examined whether CD36 signaling might influence insulin action. First, we show that CD36 deletion specific to skeletal muscle reduces expression of insulin signaling and glucose metabolism genes. It decreases muscle ceramides but impairs glucose disposal during a meal. Second, depletion of CD36 suppresses insulin signaling in primary-derived human myotubes, and the mechanism is shown to involve functional CD36 interaction with the insulin receptor (IR). CD36 promotes tyrosine phosphorylation of IR by the Fyn kinase and enhances IR recruitment of P85 and downstream signaling. Third, pretreatment for 15 min with saturated fatty acids suppresses CD36-Fyn enhancement of IR phosphorylation, whereas unsaturated fatty acids are neutral or stimulatory. These findings define mechanisms important for muscle glucose metabolism and optimal insulin responsiveness. Potential human relevance is suggested by genome-wide analysis and RNA sequencing data that associate genetically determined low muscle CD36 expression to incidence of type 2 diabetes.
© 2018 by the American Diabetes Association.
0 Communities
2 Members
0 Resources
20 MeSH Terms