Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 155

Publication Record

Connections

Inhibiting poly(ADP-ribosylation) improves axon regeneration.
Byrne AB, McWhirter RD, Sekine Y, Strittmatter SM, Miller DM, Hammarlund M
(2016) Elife 5:
MeSH Terms: ADP Ribose Transferases, Animals, Axons, Caenorhabditis elegans, Glycoside Hydrolases, Poly ADP Ribosylation, Regeneration
Show Abstract · Added March 26, 2019
The ability of a neuron to regenerate its axon after injury depends in part on its intrinsic regenerative potential. Here, we identify novel intrinsic regulators of axon regeneration: poly(ADP-ribose) glycohodrolases (PARGs) and poly(ADP-ribose) polymerases (PARPs). PARGs, which remove poly(ADP-ribose) from proteins, act in injured GABA motor neurons to enhance axon regeneration. PARG expression is regulated by DLK signaling, and PARGs mediate DLK function in enhancing axon regeneration. Conversely, PARPs, which add poly(ADP-ribose) to proteins, inhibit axon regeneration of both GABA neurons and mammalian cortical neurons. Furthermore, chemical PARP inhibitors improve axon regeneration when administered after injury. Our results indicate that regulation of poly(ADP-ribose) levels is a critical function of the DLK regeneration pathway, that poly-(ADP ribosylation) inhibits axon regeneration across species, and that chemical inhibition of PARPs can elicit axon regeneration.
0 Communities
1 Members
0 Resources
MeSH Terms
Development of a reliable automated screening system to identify small molecules and biologics that promote human β-cell regeneration.
Aamodt KI, Aramandla R, Brown JJ, Fiaschi-Taesch N, Wang P, Stewart AF, Brissova M, Powers AC
(2016) Am J Physiol Endocrinol Metab 311: E859-E868
MeSH Terms: Activins, Adenosine, Adenosine A2 Receptor Agonists, Adenosine-5'-(N-ethylcarboxamide), Adult, Automation, Cell Culture Techniques, Cell Proliferation, Drug Evaluation, Preclinical, Erythropoietin, Exenatide, Female, GABA Agents, Harmine, Humans, Incretins, Insulin-Secreting Cells, Male, Middle Aged, Monoamine Oxidase Inhibitors, Myostatin, Nucleosides, Peptides, Platelet-Derived Growth Factor, Prolactin, Regeneration, Serotonin, Serotonin Receptor Agonists, Vasodilator Agents, Venoms, Young Adult, gamma-Aminobutyric Acid
Show Abstract · Added April 26, 2017
Numerous compounds stimulate rodent β-cell proliferation; however, translating these findings to human β-cells remains a challenge. To examine human β-cell proliferation in response to such compounds, we developed a medium-throughput in vitro method of quantifying adult human β-cell proliferation markers. This method is based on high-content imaging of dispersed islet cells seeded in 384-well plates and automated cell counting that identifies fluorescently labeled β-cells with high specificity using both nuclear and cytoplasmic markers. β-Cells from each donor were assessed for their function and ability to enter the cell cycle by cotransduction with adenoviruses encoding cell cycle regulators cdk6 and cyclin D3. Using this approach, we tested 12 previously identified mitogens, including neurotransmitters, hormones, growth factors, and molecules, involved in adenosine and Tgf-1β signaling. Each compound was tested in a wide concentration range either in the presence of basal (5 mM) or high (11 mM) glucose. Treatment with the control compound harmine, a Dyrk1a inhibitor, led to a significant increase in Ki-67 β-cells, whereas treatment with other compounds had limited to no effect on human β-cell proliferation. This new scalable approach reduces the time and effort required for sensitive and specific evaluation of human β-cell proliferation, thus allowing for increased testing of candidate human β-cell mitogens.
0 Communities
2 Members
0 Resources
32 MeSH Terms
Plasmin Prevents Dystrophic Calcification After Muscle Injury.
Mignemi NA, Yuasa M, Baker CE, Moore SN, Ihejirika RC, Oelsner WK, Wallace CS, Yoshii T, Okawa A, Revenko AS, MacLeod AR, Bhattacharjee G, Barnett JV, Schwartz HS, Degen JL, Flick MJ, Cates JM, Schoenecker JG
(2017) J Bone Miner Res 32: 294-308
MeSH Terms: Animals, Calcinosis, Cardiotoxins, Diphosphates, Fibrinolysin, Fibrinolysis, Genetic Predisposition to Disease, Mice, Inbred C57BL, Muscle, Skeletal, Ossification, Heterotopic, Regeneration
Show Abstract · Added October 3, 2016
Extensive or persistent calcium phosphate deposition within soft tissues after severe traumatic injury or major orthopedic surgery can result in pain and loss of joint function. The pathophysiology of soft tissue calcification, including dystrophic calcification and heterotopic ossification (HO), is poorly understood; consequently, current treatments are suboptimal. Here, we show that plasmin protease activity prevents dystrophic calcification within injured skeletal muscle independent of its canonical fibrinolytic function. After muscle injury, dystrophic calcifications either can be resorbed during the process of tissue healing, persist, or become organized into mature bone (HO). Without sufficient plasmin activity, dystrophic calcifications persist after muscle injury and are sufficient to induce HO. Downregulating the primary inhibitor of plasmin (α2-antiplasmin) or treating with pyrophosphate analogues prevents dystrophic calcification and subsequent HO in vivo. Because plasmin also supports bone homeostasis and fracture repair, increasing plasmin activity represents the first pharmacologic strategy to prevent soft tissue calcification without adversely affecting systemic bone physiology or concurrent muscle and bone regeneration. © 2016 American Society for Bone and Mineral Research.
© 2016 American Society for Bone and Mineral Research.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Replicative capacity of β-cells and type 1 diabetes.
Saunders D, Powers AC
(2016) J Autoimmun 71: 59-68
MeSH Terms: Animals, Autoimmunity, Cell Proliferation, Cellular Microenvironment, Diabetes Mellitus, Type 1, Energy Metabolism, Humans, Insulin-Secreting Cells, Islets of Langerhans, Macrophages, Molecular Targeted Therapy, Regeneration, Signal Transduction
Show Abstract · Added July 16, 2016
Efforts to restore β-cell number or mass in type 1 diabetes (T1D) must combine an intervention to stimulate proliferation of remaining β-cells and an intervention to mitigate or control the β-cell-directed autoimmunity. This review highlights features of the β-cell, including it being part of a pancreatic islet, a mini-organ that is highly vascularized and highly innervated, and efforts to promote β-cell proliferation. In addition, the β-cell in T1D exists in a microenvironment with interactions and input from other islet cell types, extracellular matrix, vascular endothelial cells, neuronal projections, and immune cells, all of which likely influence the β-cell's capacity for replication. Physiologic β-cell proliferation occurs in human and rodents in the neonatal period and early in life, after which there is an age-dependent decline in β-cell proliferation, and also as part of the β-cell's compensatory response to the metabolic challenges of pregnancy and insulin resistance. This review reviews the molecular pathways involved in this β-cell proliferation and highlights recent work in two areas: 1) Investigators, using high-throughput screening to discover small molecules that promote human β-cell proliferation, are now focusing on the dual-specificity tyrosine-regulated kinase-1a and cell cycle-dependent kinase inhibitors CDKN2C/p18 or CDKN1A/p21as targets of compounds to stimulate adult human β-cell proliferation. 2) Local inflammation, macrophages, and the local β-cell microenvironment promote β-cell proliferation. Future efforts to harness the responsible mechanisms may lead to new approaches to promote β-cell proliferation in T1D.
Copyright © 2016 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors.
Tadokoro T, Gao X, Hong CC, Hotten D, Hogan BL
(2016) Development 143: 764-73
MeSH Terms: Animals, Apoptosis, Basement Membrane, Bone Morphogenetic Proteins, Cell Differentiation, Cell Proliferation, Epithelial Cells, Green Fluorescent Proteins, Ligands, Lung, Male, Mice, Mice, Inbred C57BL, Pyrazoles, Pyrimidines, Regeneration, Respiratory Mucosa, Signal Transduction, Stem Cells, Trachea
Show Abstract · Added February 22, 2016
The pseudostratified epithelium of the lung contains ciliated and secretory luminal cells and basal stem/progenitor cells. To identify signals controlling basal cell behavior we screened factors that alter their self-renewal and differentiation in a clonal organoid (tracheosphere) assay. This revealed that inhibitors of the canonical BMP signaling pathway promote proliferation but do not affect lineage choice, whereas exogenous Bmp4 inhibits proliferation and differentiation. We therefore followed changes in BMP pathway components in vivo in the mouse trachea during epithelial regeneration from basal cells after injury. The findings suggest that BMP signaling normally constrains proliferation at steady state and this brake is released transiently during repair by the upregulation of endogenous BMP antagonists. Early in repair, the packing of epithelial cells along the basal lamina increases, but density is later restored by active extrusion of apoptotic cells. Systemic administration of the BMP antagonist LDN-193189 during repair initially increases epithelial cell number but, following the shedding phase, normal density is restored. Taken together, these results reveal crucial roles for both BMP signaling and cell shedding in homeostasis of the respiratory epithelium.
© 2016. Published by The Company of Biologists Ltd.
1 Communities
1 Members
0 Resources
20 MeSH Terms
SOCS2 Balances Metabolic and Restorative Requirements during Liver Regeneration.
Masuzaki R, Zhao S, Valerius MT, Tsugawa D, Oya Y, Ray KC, Karp SJ
(2016) J Biol Chem 291: 3346-58
MeSH Terms: Animals, Cell Proliferation, Cells, Cultured, Gene Expression Regulation, Growth Hormone, Hepatectomy, Immunohistochemistry, Insulin-Like Growth Factor I, Liver, Liver Regeneration, Male, Mice, Inbred C57BL, Mice, Knockout, Pituitary Gland, Protein Transport, Proteolysis, Receptors, Somatotropin, Suppressor of Cytokine Signaling Proteins, Ubiquitination
Show Abstract · Added April 11, 2016
After significant injury, the liver must maintain homeostasis during the regenerative process. We hypothesized the existence of mechanisms to limit hepatocyte proliferation after injury to maintain metabolic and synthetic function. A screen for candidates revealed suppressor of cytokine signaling 2 (SOCS2), an inhibitor of growth hormone (GH) signaling, was strongly induced after partial hepatectomy. Using genetic deletion and administration of various factors we investigated the role of SOCS2 during liver regeneration. SOCS2 preserves liver function by restraining the first round of hepatocyte proliferation after partial hepatectomy by preventing increases in growth hormone receptor (GHR) via ubiquitination, suppressing GH pathway activity. At later times, SOCS2 enhances hepatocyte proliferation by modulating a decrease in serum insulin-like growth factor 1 (IGF-1) that allows GH release from the pituitary. SOCS2, therefore, plays a dual role in modulating the rate of hepatocyte proliferation. In particular, this is the first demonstration of an endogenous mechanism to limit hepatocyte proliferation after injury.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
19 MeSH Terms
mTOR disruption causes intestinal epithelial cell defects and intestinal atrophy postinjury in mice.
Sampson LL, Davis AK, Grogg MW, Zheng Y
(2016) FASEB J 30: 1263-75
MeSH Terms: Animals, Atrophy, Cell Differentiation, Cell Proliferation, Enterocytes, Enteroendocrine Cells, Epithelial Cells, Goblet Cells, Homeostasis, Intestinal Mucosa, Intestine, Small, Male, Mice, Mice, Inbred C57BL, Paneth Cells, Regeneration, Signal Transduction, Stem Cells, TOR Serine-Threonine Kinases
Show Abstract · Added March 19, 2017
Intestinal stem cells (ISCs) drive small intestinal epithelial homeostasis and regeneration. Mechanistic target of rapamycin (mTOR) regulates stem and progenitor cell metabolism and is frequently dysregulated in human disease, but its physiologic functions in the mammalian small intestinal epithelium remain poorly defined. We disrupted the genes mTOR, Rptor, Rictor, or both Rptor and Rictor in mouse ISCs, progenitors, and differentiated intestinal epithelial cells (IECs) using Villin-Cre. Mutant tissues and wild-type or heterozygous littermate controls were analyzed by histologic immunostaining, immunoblots, and proliferation assays. A total of 10 Gy irradiation was used to injure the intestinal epithelium and induce subsequent crypt regeneration. We report that mTOR supports absorptive enterocytes and secretory Paneth and goblet cell function while negatively regulating chromogranin A-positive enteroendocrine cell number. Through additional Rptor, Rictor, and Rptor/Rictor mutant mouse models, we identify mechanistic target of rapamycin complex 1 as the major IEC regulatory pathway, but mechanistic target of rapamycin complex 2 also contributes to ileal villus maintenance and goblet cell size. Homeostatic adult small intestinal crypt cell proliferation, survival, and canonical wingless-int (WNT) activity are not mTOR dependent, but Olfm4(+) ISC/progenitor population maintenance and crypt regeneration postinjury require mTOR. Overall, we conclude that mTOR regulates multiple IEC lineages and promotes stem and progenitor cell activity during intestinal epithelium repair postinjury.
© FASEB.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Loss of hepatocyte ERBB3 but not EGFR impairs hepatocarcinogenesis.
Scheving LA, Zhang X, Stevenson MC, Weintraub MA, Abbasi A, Clarke AM, Threadgill DW, Russell WE
(2015) Am J Physiol Gastrointest Liver Physiol 309: G942-54
MeSH Terms: Age Factors, Animals, Cell Proliferation, Cell Transformation, Neoplastic, Diethylnitrosamine, ErbB Receptors, Genotype, Hepatocytes, Liver Neoplasms, Liver Regeneration, Male, Mice, 129 Strain, Mice, Inbred C3H, Mice, Knockout, Phenotype, Phosphorylation, Receptor, ErbB-3, STAT3 Transcription Factor, Signal Transduction
Show Abstract · Added May 5, 2016
Epidermal growth factor receptor (EGFR) and ERBB3 have been implicated in hepatocellular carcinogenesis (HCC). However, it is not known whether altering the activity of either EGFR or ERBB3 affects HCC development. We now show that Egfr(Dsk5) mutant mice, which have a gain-of-function allele that increases basal EGFR kinase activity, develop spontaneous HCC by 10 mo of age. Their tumors show increased activation of EGFR, ERBB2, and ERBB3 as well as AKT and ERK1,2. Hepatocyte-specific models of EGFR and ERBB3 gene ablation were generated to evaluate how the loss of these genes affected tumor progression. Loss of either receptor tyrosine kinase did not alter liver development or regenerative liver growth following carbon tetrachloride injection. However, using a well-characterized model of HCC in which N-nitrosodiethylamine is injected into 14-day-old mice, we discovered that loss of hepatocellular ERBB3 but not EGFR, which occurred after tumor initiation, retarded liver tumor formation and cell proliferation. We found no evidence that this was due to increased apoptosis or diminished phosphatidylinositol-3-kinase activity in the ERBB3-null cells. However, the relative amount of phospho-STAT3 was diminished in tumors derived from these mice, suggesting that ERBB3 may promote HCC through STAT3 activation.
Copyright © 2015 the American Physiological Society.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Substrate modulus of 3D-printed scaffolds regulates the regenerative response in subcutaneous implants through the macrophage phenotype and Wnt signaling.
Guo R, Merkel AR, Sterling JA, Davidson JM, Guelcher SA
(2015) Biomaterials 73: 85-95
MeSH Terms: Animals, Cells, Cultured, Collagen, Down-Regulation, Fibroblasts, Humans, Intercellular Signaling Peptides and Proteins, Kinetics, Macrophages, Male, Neovascularization, Pathologic, Phenotype, Porosity, Pressure, Printing, Three-Dimensional, Rats, Rats, Sprague-Dawley, Regeneration, Tissue Engineering, Tissue Scaffolds, Wnt Proteins, Wnt Signaling Pathway, Wound Healing, beta Catenin
Show Abstract · Added February 23, 2016
The growing need for therapies to treat large cutaneous defects has driven recent interest in the design of scaffolds that stimulate regenerative wound healing. While many studies have investigated local delivery of biologics as a restorative approach, an increasing body of evidence highlights the contribution of the mechanical properties of implanted scaffolds to wound healing. In the present study, we designed poly(ester urethane) scaffolds using a templated-Fused Deposition Modeling (t-FDM) process to test the hypothesis that scaffolds with substrate modulus comparable to that of collagen fibers enhance a regenerative versus a fibrotic response. We fabricated t-FDM scaffolds with substrate moduli varying from 5 to 266 MPa to investigate the effects of substrate modulus on healing in a rat subcutaneous implant model. Angiogenesis, cellular infiltration, collagen deposition, and directional variance of collagen fibers were maximized for wounds treated with scaffolds having a substrate modulus (Ks = 24 MPa) comparable to that of collagen fibers. The enhanced regenerative response in these scaffolds was correlated with down-regulation of Wnt/β-catenin signaling in fibroblasts, as well as increased polarization of macrophages toward the restorative M2 phenotype. These observations highlight the substrate modulus of the scaffold as a key parameter regulating the regenerative versus scarring phenotype in wound healing. Our findings further point to the potential use of scaffolds with substrate moduli tuned to that of the native matrix as a therapeutic approach to improve cutaneous healing.
Copyright © 2015 Elsevier Ltd. All rights reserved.
1 Communities
2 Members
0 Resources
24 MeSH Terms
Biology of hepatocyte regeneration in acute liver failure.
Karp SJ
(2015) Liver Transpl 21 Suppl 1: S34-5
MeSH Terms: Hepatocytes, Humans, Liver Failure, Acute, Liver Regeneration
Added April 11, 2016
0 Communities
1 Members
0 Resources
4 MeSH Terms