Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 22

Publication Record

Connections

Dopamine depletion alters phosphorylation of striatal proteins in a model of Parkinsonism.
Brown AM, Deutch AY, Colbran RJ
(2005) Eur J Neurosci 22: 247-56
MeSH Terms: Aging, Animals, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Calcium-Calmodulin-Dependent Protein Kinases, Corpus Striatum, Disease Models, Animal, Dopamine, Dopamine and cAMP-Regulated Phosphoprotein 32, Levodopa, Male, Nerve Tissue Proteins, Neural Pathways, Neuronal Plasticity, Parkinsonian Disorders, Phosphoprotein Phosphatases, Phosphoproteins, Phosphorylation, Presynaptic Terminals, Protein Phosphatase 1, Rats, Rats, Sprague-Dawley, Receptors, AMPA, Substantia Nigra, Synaptic Membranes, Up-Regulation
Show Abstract · Added June 21, 2013
Nigrostriatal dopamine depletion disrupts striatal medium spiny neuron morphology in Parkinson's disease and modulates striatal synaptic plasticity in animal models of parkinsonism. We demonstrate that long-term nigrostriatal dopamine depletion in the rat induces evolving changes in the phosphorylation of striatal proteins critical for synaptic plasticity. Dopamine depletion increased the phosphorylation of the alpha isoform of calcium-calmodulin-dependent protein kinase II (CaMKIIalpha) at Thr286, a site associated with enhanced autonomous kinase activity, but did not alter total levels of CaMKIIalpha or other synaptic proteins. Dopamine depletion decreased CaMKIIalpha levels in postsynaptic density-enriched fractions without significant changes in other proteins. The activity of protein phosphatase 1 (PP1), a postsynaptic phosphatase that dephosphorylates CaMKII, is regulated by DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of 32 kDa). Dopamine depletion had no effect on DARPP-32 phosphorylation at Thr34, but increased DARPP-32 phosphorylation at Thr75. Levodopa administration reversed the increased phosphorylation of both CaMKIIalpha and DARPP-32. Normal ageing increased the levels of PP1(gamma1 isoform) but decreased levels of the PP1gamma1-targeting proteins spinophilin and neurabin. Elevated phosphorylations of CaMKIIalpha and DARPP-32 were maintained for up to 20 months after dopamine depletion. However, phosphorylation of the CaMKII-PP1 substrate, Ser831 in the glutamate receptor GluR1 subunit, was increased only after sustained (9-20 months) dopamine depletion. Interaction of ageing-related changes in PP1 with the dopamine depletion-induced changes in CaMKIIalpha may account for enhanced GluR1 phosphorylation only after long-term dopamine depletion. These evolving changes may impact striatal synaptic plasticity, Parkinson's disease progression and the changing efficacy and side-effects associated with dopamine replacement therapy.
0 Communities
3 Members
0 Resources
25 MeSH Terms
Dominant-negative Notch3 receptor inhibits mitogen-activated protein kinase pathway and the growth of human lung cancers.
Haruki N, Kawaguchi KS, Eichenberger S, Massion PP, Olson S, Gonzalez A, Carbone DP, Dang TP
(2005) Cancer Res 65: 3555-61
MeSH Terms: Apoptosis, Cell Cycle Proteins, Cell Growth Processes, Cell Line, Tumor, Down-Regulation, Dual Specificity Phosphatase 1, Enzyme Inhibitors, ErbB Receptors, Humans, Immediate-Early Proteins, Lung Neoplasms, MAP Kinase Signaling System, Mitogen-Activated Protein Kinases, Phosphoprotein Phosphatases, Phosphorylation, Protein Phosphatase 1, Protein Tyrosine Phosphatases, Proto-Oncogene Proteins, Quinazolines, Receptor, Notch3, Receptors, Cell Surface, Receptors, Notch, Transfection, Tyrphostins
Show Abstract · Added March 5, 2014
Notch3 is a member of an evolutionarily conserved family of cell surface receptors important in cell-fate determination in both vertebrates and invertebrates. Significant data support the role of Notch pathway in cancer development, although the conflicting role of Notch signaling pathways in tumorigenesis suggests that its action is highly context-dependent. Furthermore, although Notch receptors signal primarily through the regulation of hairy enhancer of split (HES) and HES-related (HRT) genes, they are known to crosstalk with other signaling pathways, including the epidermal growth factor (EGF) and the mitogen-activated protein kinase pathways. Whereas much is known about the role of Notch1 in human cancer, the role of Notch3 in epithelial tumors, such as lung carcinomas, has not been well established. In this study, we show that Notch3 is expressed in 80 of 207 (39%) resected human lung tumors and that its expression is positively correlated with EGF receptor expression. Inhibition of the Notch3 pathway using a dominant-negative receptor dramatically reduces growth in soft agar and increases growth factor dependence. We also find that Notch inhibition increases sensitivity to EGF receptor tyrosine kinase inhibition and decrease in phosphorylation of the mitogen-activated protein kinase. These observations support a role for Notch3 signaling in lung cancer, and one potential mechanism of maintaining the neoplastic phenotype is through the modulation of the EGF pathway.
0 Communities
1 Members
0 Resources
24 MeSH Terms
O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits.
Wells L, Kreppel LK, Comer FI, Wadzinski BE, Hart GW
(2004) J Biol Chem 279: 38466-70
MeSH Terms: Animals, Blotting, Western, Brain, Catalytic Domain, Cell Nucleus, Chromatography, Chromatography, Gel, Chromatography, Liquid, Cytosol, Mass Spectrometry, N-Acetylglucosaminyltransferases, Phosphoprotein Phosphatases, Phosphoric Monoester Hydrolases, Phosphorylation, Precipitin Tests, Protein Binding, Protein Isoforms, Protein Phosphatase 1, Protein Structure, Tertiary, Rats, Serine, Signal Transduction, Threonine
Show Abstract · Added December 10, 2013
A hallmark of signal transduction is the dynamic and inducible post-translational modification of proteins. In addition to the well characterized phosphorylation of proteins, other modifications have been shown to be regulatory, including O-linked beta-N-acetylglucosamine (O-GlcNAc). O-GlcNAc modifies serine and threonine residues on a myriad of nuclear and cytosolic proteins, and for several proteins there appears to be a reciprocal relationship between phosphorylation and O-GlcNAc modification. Here we report further evidence of this yin-yang relationship by demonstrating that O-GlcNAc transferase, the enzyme that adds O-GlcNAc to proteins, exists in stable and active complexes with the serine/threonine phosphatases PP1beta and PP1gamma, enzymes that remove phosphate from proteins. The existence of this complex highlights the importance of understanding the dynamic relationship between O-GlcNAc and phosphate in modulating protein function in many cellular processes and disease states such as Alzheimer's disease and type II diabetes.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Regulation of choline transporter surface expression and phosphorylation by protein kinase C and protein phosphatase 1/2A.
Gates J, Ferguson SM, Blakely RD, Apparsundaram S
(2004) J Pharmacol Exp Ther 310: 536-45
MeSH Terms: Animals, Brain, Enzyme Activation, Enzyme Inhibitors, Gene Expression Regulation, Male, Membrane Transport Proteins, Mice, Mice, Inbred C57BL, Phosphoprotein Phosphatases, Phosphorylation, Protein Kinase C, Protein Phosphatase 1, Synaptosomes
Show Abstract · Added July 10, 2013
The Na(+)/Cl(-)-dependent, hemicholinium-3-sensitive choline transporter (CHT) provides choline for acetylcholine biosynthesis. Recent studies show that CHT contains canonical protein kinase C (PKC) serine and threonine residues. We examined the ability of PKC and serine/threonine protein phosphatase 1/2A (PP1/PP2A) to regulate CHT function, surface expression, and phosphorylation. In mouse crude striatal and hippocampal synaptosomes, PKC activators beta-phorbol 12-myristate 13-acetate (beta-PMA) and beta-phorbol 12,13-dibutyrate produced time- and concentration-dependent reductions in CHT function. PP1/PP2A inhibitors okadaic acid (OKA) and calyculin A (CL-A) produced a time- and concentration-dependent decrease in CHT function. However, tautomycin (PP1 inhibitor) and cyclosporin A (PP2B inhibitor) failed to alter CHT-mediated choline uptake. Choline transport kinetic studies following beta-PMA, OKA, and CL-A treatment revealed a reduction in the maximal choline transport velocity (V(max)) with no change in K(m) for choline. These modulators also produced no change in the total levels of CHT protein in the crude hippocampal and striatal synaptosomes; however, surface biotinylation studies using the membrane-impermeant N-hydroxysuccinimide-biotin in crude synaptosomes following treatment with beta-PMA, OKA, and CL-A indicate significant reductions of CHT levels in biotinylated fractions. Pretreatment with OKA alone, but not beta-PMA, significantly augmented the phosphorylation level of CHT proteins. Our findings suggest that neuronal PKC and PP1/PP2A activity may establish the level of function and surface expression of CHT. These studies also provide the first evidence that CHT is a phosphoprotein and that the basal PP1/PP2A activity may have a dominant role in controlling the levels of CHT phosphorylation.
1 Communities
1 Members
0 Resources
14 MeSH Terms
A protein phosphatase-1gamma1 isoform selectivity determinant in dendritic spine-associated neurabin.
Carmody LC, Bauman PA, Bass MA, Mavila N, DePaoli-Roach AA, Colbran RJ
(2004) J Biol Chem 279: 21714-23
MeSH Terms: Actins, Amino Acid Motifs, Amino Acid Sequence, Animals, Blotting, Western, Brain, Catalytic Domain, Dendrites, Dose-Response Relationship, Drug, Gene Deletion, Genetic Vectors, Glutathione Transferase, Mice, Microfilament Proteins, Molecular Sequence Data, Muscles, Mutagenesis, Site-Directed, Mutation, Nerve Tissue Proteins, Phosphoprotein Phosphatases, Precipitin Tests, Protein Binding, Protein Isoforms, Protein Phosphatase 1, Protein Structure, Tertiary, Rats, Recombinant Fusion Proteins, Recombinant Proteins, Sequence Homology, Amino Acid
Show Abstract · Added June 21, 2013
Protein phosphatase-1 (PP1) catalytic subunit isoforms interact with diverse proteins, typically containing a canonical (R/K)(V/I)XF motif. Despite sharing approximately 90% amino acid sequence identity, PP1beta and PP1gamma1 have distinct subcellular localizations that may be determined by selective interactions with PP1-binding proteins. Immunoprecipitation studies from brain and muscle extracts demonstrated that PP1gamma1 selectively interacts with spinophilin and neurabin, F-actin-targeting proteins, whereas PP1beta selectively interacted with G(M)/R(GL), the striated-muscle glycogen-targeting subunit. Glutathione S-transferase (GST) fusion proteins containing residues 146-493 of neurabin (GST-Nb-(146-493)) or residues 1-240 of G(M)/R(GL) (GST-G(M)-(1-240)) recapitulated these isoform selectivities in binding and phosphatase activity inhibition assays. Site-directed mutagenesis indicated that this isoform selectivity was not due to sequence differences between the canonical PP1-binding motifs (neurabin, (457)KIKF(460); G(M)/R(GL), (65)RVSF(68)). A chimeric GST fusion protein containing residues 1-64 of G(M)/R(GL) fused to residues 457-493 of neurabin (GST-G(M)/Nb) selectively bound to and inhibited PP1gamma1, whereas a GST-Nb/G(M) chimera containing Nb-(146-460) fused to G(M)-(69-240) selectively interacted with and weakly inhibited PP1beta, implicating domain(s) C-terminal to the (R/K)(V/I)XF motif as determinants of PP1 isoform selectivity. Deletion of Pro(464) and Ile(465) in neurabin (deltaPI) to equally space a conserved cluster of amino acids from the (R/K)(V/I)XF motif as in G(M)/R(GL) severely compromised the ability of neurabin to bind and inhibit both isoforms but did not affect PP1gamma1 selectivity. Further analysis of a series of C-terminal truncated GST-Nb-(146-493) proteins identified residues 473-479 of neurabin as containing a crucial PP1gamma1-selectivity determinant. In combination, these data identify a novel PP1gamma1-selective interaction domain in neurabin that may allow for selective regulation and/or subcellular targeting of PP1 isoforms.
0 Communities
1 Members
0 Resources
29 MeSH Terms
Analysis of specific interactions of native protein phosphatase 1 isoforms with targeting subunits.
Colbran RJ, Carmody LC, Bauman PA, Wadzinski BE, Bass MA
(2003) Methods Enzymol 366: 156-75
MeSH Terms: Amino Acid Sequence, Animals, Antibody Specificity, Brain, Isoenzymes, Kinetics, Molecular Sequence Data, Phosphoprotein Phosphatases, Phosphorylation, Prosencephalon, Protein Phosphatase 1, Protein Subunits, Rats, Sequence Alignment, Sequence Homology, Amino Acid
Show Abstract · Added December 10, 2013
Expression of recombinant PP1 isoforms with fully authentic properties has proven to be a challenge for several laboratories. In order to circumvent this technical limitation in the investigation of isoform-specific roles for PP1, methods have been developed to analyze specific properties of native PP1 isoforms. The well-documented method of ethanol precipitation of tissue extracts has been used to dissociate phosphatase catalytic subunits from their endogenous regulatory subunits and other cellular proteins. Although very low levels of PP1 and PP2A regulatory subunits are sometimes detected in PPC preparations, they are not associated with their respective catalytic subunits because they do not copurify with the catalytic subunits on microcystin-Sepharose (Bauman & Colbran, not shown). Thus, the PPC preparation represents a mixture of native monomeric phosphatase catalytic subunits (including PP1 isoforms, PP2AC, PP4C, and PP6C) that can be used to analyze their interactions with other proteins. The methods described in this report rely on the availability of highly specific antibodies to PP1 isoforms. The sheep antibodies have previously proven effective for immunoblotting and immunoprecipitation, whereas rabbit antibodies have also been used for immunocytochemistry. This paper documents the use of these antibodies in Far-Western overlay and glutathione-agarose cosedimentation assays to investigate interactions of specific PP1 isoforms with recombinant fragments of PP1-targeting subunits (spinophilin, neurabin and GM). Moreover, covalent coupling of affinity-purified sheep antibodies to agarose provided a means for the immuno-isolation of PP1 beta and PP1 gamma 1 from the PPC preparation. Active catalytic subunits are recovered from the affinity resin using chaotropic agents, permitting for the first time the assessment of the effects of specific targeting subunits on activities of individual native PP1 isoforms. These methods have been used successfully to demonstrate that some PP1-interacting proteins discriminate among the isoforms. The isoform inhibition assays provide a measure of the binding equilibrium in the milieu of the phosphatase assay. For example, while some PP1-binding proteins inhibit native PP1 beta and native PP1 gamma 1 with equivalent potency (e.g., PKA-phosphorylated inhibitor-1), spinophilin, neurabin and GM differentiate between these two isoforms; spinophilin and neurabin fragments inhibit native PP1 gamma 1 approximately 20-fold more potently than they inhibit native PP1 beta (Fig. 4), whereas GM inhibits native PP1 beta more potently than native PP1 gamma 1 (not shown). Moreover, the activity of native PP1 gamma 1 is approximately 100-fold more sensitive to neurabin and spinophilin than is the activity of bacterially-expressed recombinant PP1 gamma 1 (Fig. 4). The interpretation of these inhibition assays is consistent with data obtained in Far-Western overlay (Fig. 2) and glutathione-agarose cosedimentation assays (Fig. 3), which assess more stable interactions of PP1 isoforms. Thus, spinophilin and neurabin selectively bind PP1 gamma 1 over PP1 beta, whereas GM is highly selective for PP1 beta. These data are consistent with previous experiments that showed spinophilin and neurabin are present in PP1 gamma 1 complexes in brain extracts, but not in PP1 beta complexes. Moreover, only PP1 beta has been identified in complexes with GM in muscle extracts, although these data did not exclude the possibility that other isoforms were also present. Presumably, these isoform-selective interactions confer different functions on PP1. In summary, we have developed methods that should prove useful in defining the isoform-selectivity of other PP1-targeting subunits. Moreover, these methods may be employed to identify domains in PP1-interacting proteins that confer isoform specificity. Similar strategies may also be used to explore interactions of protein phosphatase catalytic subunits with other proteins.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Cocaine and antidepressant-sensitive biogenic amine transporters exist in regulated complexes with protein phosphatase 2A.
Bauman AL, Apparsundaram S, Ramamoorthy S, Wadzinski BE, Vaughan RA, Blakely RD
(2000) J Neurosci 20: 7571-8
MeSH Terms: Animals, Antidepressive Agents, Biogenic Amines, Biological Transport, Carrier Proteins, Cell Line, Cocaine, Dopamine Plasma Membrane Transport Proteins, Humans, Macromolecular Substances, Membrane Glycoproteins, Membrane Transport Proteins, Nerve Tissue Proteins, Norepinephrine Plasma Membrane Transport Proteins, Okadaic Acid, Oxazoles, Phorbol Esters, Phosphoprotein Phosphatases, Phosphorylation, Precipitin Tests, Protein Kinase C, Protein Phosphatase 1, Protein Phosphatase 2, Protein Transport, Serotonin, Serotonin Plasma Membrane Transport Proteins, Symporters, Transfection
Show Abstract · Added December 10, 2013
Presynaptic transporter proteins regulate the clearance of extracellular biogenic amines after release and are important targets for multiple psychoactive agents, including amphetamines, cocaine, and antidepressant drugs. Recent studies reveal that dopamine (DA), norepinephrine (NE), and serotonin (5-HT) transporters (DAT, NET, and SERT, respectively) are rapidly regulated by direct or receptor-mediated activation of cellular kinases, particularly protein kinase C (PKC). With SERTs, PKC activation results in activity-dependent transporter phosphorylation and sequestration. Protein phosphatase 1/2A (PP1/PP2A) inhibitors, such as okadaic acid (OA) and calyculin A, also promote SERT phosphorylation and functional downregulation. How kinase, phosphatase, and transporter activities are linked mechanistically is unclear. In the present study, we found that okadaic acid-sensitive phosphatase activity is enriched in SERT immunoprecipitates from human SERT stably transfected cells. Moreover, blots of these immunoprecipitates reveal the presence of PP2A catalytic subunit (PP2Ac), findings replicated using brain preparations. Whole-cell treatments with okadaic acid or calyculin A diminished SERT/PP2Ac associations. Phorbol esters, which trigger SERT phosphorylation, also diminish SERT/PP2Ac associations, effects that can be blocked by PKC antagonists as well as the SERT substrate 5-HT. Similar transporter/PP2Ac complexes were also observed in coimmunoprecipitation studies with NETs and DATs. Our findings provide evidence for the existence of regulated heteromeric assemblies involving biogenic amine transporters and PP2A and suggest that the dynamic stability of these complexes may govern transporter phosphorylation and sequestration.
1 Communities
2 Members
0 Resources
28 MeSH Terms
Brain actin-associated protein phosphatase 1 holoenzymes containing spinophilin, neurabin, and selected catalytic subunit isoforms.
MacMillan LB, Bass MA, Cheng N, Howard EF, Tamura M, Strack S, Wadzinski BE, Colbran RJ
(1999) J Biol Chem 274: 35845-54
MeSH Terms: Amino Acid Sequence, Animals, Cell Line, Chromatography, Gel, Chromatography, Ion Exchange, DNA, Complementary, Humans, Isoenzymes, Macromolecular Substances, Microfilament Proteins, Molecular Sequence Data, Nerve Tissue Proteins, Phosphoprotein Phosphatases, Prosencephalon, Protein Phosphatase 1, Protein Structure, Quaternary, Rats, Recombinant Proteins, Sequence Alignment, Sequence Homology, Amino Acid, Transfection
Show Abstract · Added December 10, 2013
We previously characterized PP1bp134 and PP1bp175, two neuronal proteins that bind the protein phosphatase 1 catalytic subunit (PP1). Here we purify from rat brain actin-cytoskeletal extracts PP1(A) holoenzymes selectively enriched in PP1gamma(1) over PP1beta isoforms and also containing PP1bp134 and PP1bp175. PP1bp134 and PP1bp175 were identified as the synapse-localized F-actin-binding proteins spinophilin (Allen, P. B., Ouimet, C. C., and Greengard, P. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 9956-9561; Satoh, A., Nakanishi, H., Obaishi, H., Wada, M., Takahashi, K., Satoh, K., Hirao, K., Nishioka, H., Hata, Y., Mizoguchi, A., and Takai, Y. (1998) J. Biol. Chem. 273, 3470-3475) and neurabin (Nakanishi, H., Obaishi, H., Satoh, A., Wada, M., Mandai, K., Satoh, K., Nishioka, H. , Matsuura, Y., Mizoguchi, A., and Takai, Y. (1997) J. Cell Biol. 139, 951-961), respectively. Recombinant spinophilin and neurabin interacted with endogenous PP1 and also with each other when co-expressed in HEK293 cells. Spinophilin residues 427-470, or homologous neurabin residues 436-479, were sufficient to bind PP1 in gel overlay assays, and selectively bound PP1gamma(1) from a mixture of brain protein phosphatase catalytic subunits; additional N- and C-terminal sequences were required for potent inhibition of PP1. Immunoprecipitation of spinophilin or neurabin from crude brain extracts selectively coprecipitated PP1gamma(1) over PP1beta. Moreover, immunoprecipitation of PP1gamma(1) from brain extracts efficiently coprecipitated spinophilin and neurabin, whereas PP1beta immunoprecipitation did not. Thus, PP1(A) holoenzymes containing spinophilin and/or neurabin target specific neuronal PP1 isoforms, facilitating efficient regulation of synaptic phosphoproteins.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Differential cellular and subcellular localization of protein phosphatase 1 isoforms in brain.
Strack S, Kini S, Ebner FF, Wadzinski BE, Colbran RJ
(1999) J Comp Neurol 413: 373-84
MeSH Terms: Animals, Brain, Cells, Cultured, Cerebral Cortex, Female, Immunohistochemistry, Isoenzymes, Male, Microtubules, Neurons, Organ Specificity, Phosphoprotein Phosphatases, Protein Phosphatase 1, Rats, Rhombencephalon, Subcellular Fractions, Synapses
Show Abstract · Added December 10, 2013
Protein phosphatase 1 (PP1) is a gene family with a number of important functions in brain. Association with a wide variety of regulatory/targeting subunits is thought to be instrumental in directing the phosphatase to specific subcellular locations and substrates. By using antibodies directed against specific PP1 isoforms, we asked whether PP1 isoforms are differentially distributed in brain. Immunoblotting detects in brain the PP1gamma2 isoform, which had previously been thought to be testis specific, in addition to alpha, beta, and gamma1 isoforms. PP1 isoform expression varies modestly in extracts from different subdissected brain regions and is relatively constant during postnatal development, except for an about twofold increase in PP1gamma2. By immunohistochemical analyses of rat brain, PP1beta and PP1gamma1 cellular expression is widespread but quite distinct from one another. Subcellular fractionation studies demonstrate that PP1beta and PP1gamma1 are selectively associated with different cytoskeletal elements: PP1beta with microtubules, PP1gamma1 with the actin cytoskeleton. Double-immunofluorescence labeling of cultured cortical neurons further reveals a strikingly different and nonoverlapping localization of PP1beta and PP1gamma1: whereas PP1beta localizes to a discrete area of the soma, PP1gamma1 is highly enriched in dendritic spines and presynaptic terminals of cultured neurons. These results show that PP1 isoforms are targeted to different neuronal cytoskeletal compartments with a high degree of specificity, presumably by isoform-specific association with regulatory/targeting proteins. Furthermore, the synaptic localization of PP1gamma1 indicates that it is this isoform that is involved in the regulation of synaptic phosphoproteins such as neurotransmitter receptors and ion channels implicated in synaptic plasticity.
Copyright 1999 Wiley-Liss, Inc.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Protein serine/threonine phosphatase 1 and 2A associate with and dephosphorylate neurofilaments.
Strack S, Westphal RS, Colbran RJ, Ebner FF, Wadzinski BE
(1997) Brain Res Mol Brain Res 49: 15-28
MeSH Terms: Amino Acid Sequence, Animals, Axons, Binding Sites, Cattle, Chromatography, Affinity, Chromatography, Gel, Macromolecular Substances, Molecular Sequence Data, Neurofilament Proteins, Peptide Fragments, Phosphoprotein Phosphatases, Phosphorylase Phosphatase, Protein Phosphatase 1, Rats, Rats, Sprague-Dawley, Spinal Cord
Show Abstract · Added December 10, 2013
The phosphorylation state of neurofilaments plays an important role in the control of cytoskeletal integrity, axonal transport, and axon diameter. Immunocytochemical analyses of spinal cord revealed axonal localization of all protein phosphatase subunits. To determine whether protein phosphatases associate with axonal neurofilaments, neurofilament proteins were isolated from bovine spinal cord white matter by gel filtration. approximately 15% of the total phosphorylase a phosphatase activity was present in the neurofilament fraction. The catalytic subunits of PP1 and PP2A, as well as the A and B alpha regulatory subunits of PP2A, were detected in the neurofilament fraction by immunoblotting, whereas PP2B and PP2C were found exclusively in the low molecular weight soluble fractions. PP1 and PP2A subunits could be partially dissociated from neurofilaments by high salt but not by phosphatase inhibitors, indicating that the interaction does not involve the catalytic site. In both neurofilament and soluble fractions, 75% of the phosphatase activity towards exogenous phosphorylase a could be attributed to PP2A, and the remainder to PP1 as shown with specific inhibitors. Neurofilament proteins were phosphorylated in vitro by associated protein kinases which appeared to include protein kinase A, calcium/calmodulin-dependent protein kinase, and heparin-sensitive and -insensitive cofactor-independent kinases. Dephosphorylation of phosphorylated neurofilament subunits was mainly (60%) catalyzed by associated PP2A, with PP1 contributing minor activity (10-20%). These studies suggest that neurofilament-associated PP1 and PP2A play an important role in the regulation of neurofilament phosphorylation.
0 Communities
1 Members
0 Resources
17 MeSH Terms