, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 129

Publication Record

Connections

Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types.
Kar SP, Beesley J, Amin Al Olama A, Michailidou K, Tyrer J, Kote-Jarai Z, Lawrenson K, Lindstrom S, Ramus SJ, Thompson DJ, ABCTB Investigators, Kibel AS, Dansonka-Mieszkowska A, Michael A, Dieffenbach AK, Gentry-Maharaj A, Whittemore AS, Wolk A, Monteiro A, Peixoto A, Kierzek A, Cox A, Rudolph A, Gonzalez-Neira A, Wu AH, Lindblom A, Swerdlow A, AOCS Study Group & Australian Cancer Study (Ovarian Cancer), APCB BioResource, Ziogas A, Ekici AB, Burwinkel B, Karlan BY, Nordestgaard BG, Blomqvist C, Phelan C, McLean C, Pearce CL, Vachon C, Cybulski C, Slavov C, Stegmaier C, Maier C, Ambrosone CB, Høgdall CK, Teerlink CC, Kang D, Tessier DC, Schaid DJ, Stram DO, Cramer DW, Neal DE, Eccles D, Flesch-Janys D, Edwards DR, Wokozorczyk D, Levine DA, Yannoukakos D, Sawyer EJ, Bandera EV, Poole EM, Goode EL, Khusnutdinova E, Høgdall E, Song F, Bruinsma F, Heitz F, Modugno F, Hamdy FC, Wiklund F, Giles GG, Olsson H, Wildiers H, Ulmer HU, Pandha H, Risch HA, Darabi H, Salvesen HB, Nevanlinna H, Gronberg H, Brenner H, Brauch H, Anton-Culver H, Song H, Lim HY, McNeish I, Campbell I, Vergote I, Gronwald J, Lubiński J, Stanford JL, Benítez J, Doherty JA, Permuth JB, Chang-Claude J, Donovan JL, Dennis J, Schildkraut JM, Schleutker J, Hopper JL, Kupryjanczyk J, Park JY, Figueroa J, Clements JA, Knight JA, Peto J, Cunningham JM, Pow-Sang J, Batra J, Czene K, Lu KH, Herkommer K, Khaw KT, kConFab Investigators, Matsuo K, Muir K, Offitt K, Chen K, Moysich KB, Aittomäki K, Odunsi K, Kiemeney LA, Massuger LF, Fitzgerald LM, Cook LS, Cannon-Albright L, Hooning MJ, Pike MC, Bolla MK, Luedeke M, Teixeira MR, Goodman MT, Schmidt MK, Riggan M, Aly M, Rossing MA, Beckmann MW, Moisse M, Sanderson M, Southey MC, Jones M, Lush M, Hildebrandt MA, Hou MF, Schoemaker MJ, Garcia-Closas M, Bogdanova N, Rahman N, NBCS Investigators, Le ND, Orr N, Wentzensen N, Pashayan N, Peterlongo P, Guénel P, Brennan P, Paulo P, Webb PM, Broberg P, Fasching PA, Devilee P, Wang Q, Cai Q, Li Q, Kaneva R, Butzow R, Kopperud RK, Schmutzler RK, Stephenson RA, MacInnis RJ, Hoover RN, Winqvist R, Ness R, Milne RL, Travis RC, Benlloch S, Olson SH, McDonnell SK, Tworoger SS, Maia S, Berndt S, Lee SC, Teo SH, Thibodeau SN, Bojesen SE, Gapstur SM, Kjær SK, Pejovic T, Tammela TL, GENICA Network, PRACTICAL consortium, Dörk T, Brüning T, Wahlfors T, Key TJ, Edwards TL, Menon U, Hamann U, Mitev V, Kosma VM, Setiawan VW, Kristensen V, Arndt V, Vogel W, Zheng W, Sieh W, Blot WJ, Kluzniak W, Shu XO, Gao YT, Schumacher F, Freedman ML, Berchuck A, Dunning AM, Simard J, Haiman CA, Spurdle A, Sellers TA, Hunter DJ, Henderson BE, Kraft P, Chanock SJ, Couch FJ, Hall P, Gayther SA, Easton DF, Chenevix-Trench G, Eeles R, Pharoah PD, Lambrechts D
(2016) Cancer Discov 6: 1052-67
MeSH Terms: Breast Neoplasms, Case-Control Studies, Chromosome Mapping, Datasets as Topic, Enhancer Elements, Genetic, Female, Gene Regulatory Networks, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Meta-Analysis as Topic, Organ Specificity, Ovarian Neoplasms, Polymorphism, Single Nucleotide, Prostatic Neoplasms, Quantitative Trait Loci, Signal Transduction
Show Abstract · Added April 26, 2017
UNLABELLED - Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10(-8) seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis.
SIGNIFICANCE - We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052-67. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 932.
©2016 American Association for Cancer Research.
0 Communities
3 Members
0 Resources
19 MeSH Terms
Manipulating the NF-κB pathway in macrophages using mannosylated, siRNA-delivering nanoparticles can induce immunostimulatory and tumor cytotoxic functions.
Ortega RA, Barham W, Sharman K, Tikhomirov O, Giorgio TD, Yull FE
(2016) Int J Nanomedicine 11: 2163-77
MeSH Terms: Animals, Bone Marrow Cells, Cell Line, Tumor, Chemokine CXCL9, Female, Glycosylation, Lipids, Macrophages, Mice, Knockout, Mice, Transgenic, NF-KappaB Inhibitor alpha, NF-kappa B, Nanomedicine, Nanoparticles, Neoplasms, Ovarian Neoplasms, RNA, Small Interfering, Signal Transduction, Tumor Necrosis Factor-alpha
Show Abstract · Added March 21, 2018
Tumor-associated macrophages (TAMs) are critically important in the context of solid tumor progression. Counterintuitively, these host immune cells can often support tumor cells along the path from primary tumor to metastatic colonization and growth. Thus, the ability to transform protumor TAMs into antitumor, immune-reactive macrophages would have significant therapeutic potential. However, in order to achieve these effects, two major hurdles would need to be overcome: development of a methodology to specifically target macrophages and increased knowledge of the optimal targets for cell-signaling modulation. This study addresses both of these obstacles and furthers the development of a therapeutic agent based on this strategy. Using ex vivo macrophages in culture, the efficacy of mannosylated nanoparticles to deliver small interfering RNA specifically to TAMs and modify signaling pathways is characterized. Then, selective small interfering RNA delivery is tested for the ability to inhibit gene targets within the canonical or alternative nuclear factor-kappaB pathways and result in antitumor phenotypes. Results confirm that the mannosylated nanoparticle approach can be used to modulate signaling within macrophages. We also identify appropriate gene targets in critical regulatory pathways. These findings represent an important advance toward the development of a novel cancer therapy that would minimize side effects because of the targeted nature of the intervention and that has rapid translational potential.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Incidence and mortality of gynaecological cancers: Secular trends in urban Shanghai, China over 40 years.
Huang Z, Zheng Y, Wen W, Wu C, Bao P, Wang C, Zhong W, Gao YT, Jin F, Xiang YB, Shu XO, Beeghly-Fadiel A
(2016) Eur J Cancer 63: 1-10
MeSH Terms: Adult, Age Factors, Aged, Aged, 80 and over, China, Female, Humans, Incidence, Middle Aged, Mortality, Ovarian Neoplasms, Urban Population, Uterine Cervical Neoplasms, Uterine Neoplasms, Young Adult
Show Abstract · Added April 18, 2017
AIM - Appraisal of cancer trends is essential for future cancer control, but relevant studies in China are scarce due to a lack of long-term data. With 40-years of cancer registry data, we sought to evaluate secular time trends in incidence and mortality of gynaecological cancers in an urban Chinese population.
MATERIALS AND METHODS - Data on incidence and mortality of invasive cervical, uterine and ovarian cancer were collected by the Shanghai Cancer Registry. Age-standardised incidence and mortality rates were calculated for women aged 20-84 in urban Shanghai between 1973 and 2012. Age-period-cohort Poisson regression models were used to evaluate age, period and cohort effects. Overall linear trends, interpreted as the estimated annual percentage change (EAPC), were derived from the net drift in age-drift models.
RESULTS - Overall, cervical cancer incidence and mortality substantially decreased (EAPC = -4.5% and -5.5%, respectively); however, an upward trend was apparent among younger women (age <60). Uterine cancer incidence increased slightly (EAPC = 1.8%), while mortality decreased over time (EAPC = -2.4%). Ovarian cancer incidence and mortality both increased, although the increase in incidence (EAPC = 1.8%) was larger than mortality (EAPC = 0.6%). While cohort effects were most evident for cervical cancer incidence and mortality, significant age, period, and cohort effects were found for all three gynaecological cancers evaluated.
CONCLUSIONS - These secular trends in incidence and mortality of gynaecological cancers in Shanghai likely reflect changing risk factor profiles and improved cancer prognosis over time, and suggest new priorities and call for additional efforts for gynaecological cancer prevention and control for women in China.
Copyright © 2016 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
15 MeSH Terms
BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers.
Meeks HD, Song H, Michailidou K, Bolla MK, Dennis J, Wang Q, Barrowdale D, Frost D, EMBRACE, McGuffog L, Ellis S, Feng B, Buys SS, Hopper JL, Southey MC, Tesoriero A, kConFab Investigators, James PA, Bruinsma F, Campbell IG, Australia Ovarian Cancer Study Group, Broeks A, Schmidt MK, Hogervorst FB, HEBON, Beckman MW, Fasching PA, Fletcher O, Johnson N, Sawyer EJ, Riboli E, Banerjee S, Menon U, Tomlinson I, Burwinkel B, Hamann U, Marme F, Rudolph A, Janavicius R, Tihomirova L, Tung N, Garber J, Cramer D, Terry KL, Poole EM, Tworoger SS, Dorfling CM, van Rensburg EJ, Godwin AK, Guénel P, Truong T, GEMO Study Collaborators, Stoppa-Lyonnet D, Damiola F, Mazoyer S, Sinilnikova OM, Isaacs C, Maugard C, Bojesen SE, Flyger H, Gerdes AM, Hansen TV, Jensen A, Kjaer SK, Hogdall C, Hogdall E, Pedersen IS, Thomassen M, Benitez J, González-Neira A, Osorio A, Hoya Mde L, Segura PP, Diez O, Lazaro C, Brunet J, Anton-Culver H, Eunjung L, John EM, Neuhausen SL, Ding YC, Castillo D, Weitzel JN, Ganz PA, Nussbaum RL, Chan SB, Karlan BY, Lester J, Wu A, Gayther S, Ramus SJ, Sieh W, Whittermore AS, Monteiro AN, Phelan CM, Terry MB, Piedmonte M, Offit K, Robson M, Levine D, Moysich KB, Cannioto R, Olson SH, Daly MB, Nathanson KL, Domchek SM, Lu KH, Liang D, Hildebrant MA, Ness R, Modugno F, Pearce L, Goodman MT, Thompson PJ, Brenner H, Butterbach K, Meindl A, Hahnen E, Wappenschmidt B, Brauch H, Brüning T, Blomqvist C, Khan S, Nevanlinna H, Pelttari LM, Aittomäki K, Butzow R, Bogdanova NV, Dörk T, Lindblom A, Margolin S, Rantala J, Kosma VM, Mannermaa A, Lambrechts D, Neven P, Claes KB, Maerken TV, Chang-Claude J, Flesch-Janys D, Heitz F, Varon-Mateeva R, Peterlongo P, Radice P, Viel A, Barile M, Peissel B, Manoukian S, Montagna M, Oliani C, Peixoto A, Teixeira MR, Collavoli A, Hallberg E, Olson JE, Goode EL, Hart SN, Shimelis H, Cunningham JM, Giles GG, Milne RL, Healey S, Tucker K, Haiman CA, Henderson BE, Goldberg MS, Tischkowitz M, Simard J, Soucy P, Eccles DM, Le N, Borresen-Dale AL, Kristensen V, Salvesen HB, Bjorge L, Bandera EV, Risch H, Zheng W, Beeghly-Fadiel A, Cai H, Pylkäs K, Tollenaar RA, Ouweland AM, Andrulis IL, Knight JA, OCGN, Narod S, Devilee P, Winqvist R, Figueroa J, Greene MH, Mai PL, Loud JT, García-Closas M, Schoemaker MJ, Czene K, Darabi H, McNeish I, Siddiquil N, Glasspool R, Kwong A, Park SK, Teo SH, Yoon SY, Matsuo K, Hosono S, Woo YL, Gao YT, Foretova L, Singer CF, Rappaport-Feurhauser C, Friedman E, Laitman Y, Rennert G, Imyanitov EN, Hulick PJ, Olopade OI, Senter L, Olah E, Doherty JA, Schildkraut J, Koppert LB, Kiemeney LA, Massuger LF, Cook LS, Pejovic T, Li J, Borg A, Öfverholm A, Rossing MA, Wentzensen N, Henriksson K, Cox A, Cross SS, Pasini BJ, Shah M, Kabisch M, Torres D, Jakubowska A, Lubinski J, Gronwald J, Agnarsson BA, Kupryjanczyk J, Moes-Sosnowska J, Fostira F, Konstantopoulou I, Slager S, Jones M, PRostate cancer AssoCiation group To Investigate Cancer Associated aLterations in the genome, Antoniou AC, Berchuck A, Swerdlow A, Chenevix-Trench G, Dunning AM, Pharoah PD, Hall P, Easton DF, Couch FJ, Spurdle AB, Goldgar DE
(2016) J Natl Cancer Inst 108:
MeSH Terms: Adult, Aged, BRCA2 Protein, Breast Neoplasms, Codon, Terminator, Female, Genetic Predisposition to Disease, Heterozygote, Humans, Logistic Models, Lysine, Male, Middle Aged, Neoplasm Invasiveness, Odds Ratio, Ovarian Neoplasms, Polymorphism, Single Nucleotide, Prostatic Neoplasms, Risk Assessment, Risk Factors
Show Abstract · Added February 22, 2016
BACKGROUND - The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers.
METHODS - Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided.
RESULTS - The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10(-) (6)) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10(-3)). These associations were stronger for serous ovarian cancer and for estrogen receptor-negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10(-5) and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10(-5), respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed.
CONCLUSIONS - Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations.
© The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Microenvironmental effects limit efficacy of thymoquinone treatment in a mouse model of ovarian cancer.
Wilson AJ, Saskowski J, Barham W, Khabele D, Yull F
(2015) Mol Cancer 14: 192
MeSH Terms: Animals, Antinematodal Agents, Apoptosis, Benzoquinones, Cell Line, Tumor, Clodronic Acid, Disease Models, Animal, Female, Macrophages, Mice, Mice, Inbred C57BL, NF-kappa B, Ovarian Neoplasms
Show Abstract · Added January 26, 2016
BACKGROUND - Ovarian cancer is the most lethal gynecologic malignancy, with limited treatment options for chemoresistant disease. An important link between inflammation and peritoneal spread of ovarian cancer is NF-κB signaling. Thymoquinone (TQ) exerts multiple anti-tumorigenic cellular effects, including NF-κB inhibition. We aimed to investigate the therapeutic potential of TQ in an established murine syngeneic model of ovarian cancer.
METHODS - ID8-NGL mouse ovarian cancer cells stably expressing an NF-κB reporter transgene were injected intra-peritoneally into C57BL/6 mice, and mice were treated with TQ or vehicle for 10 or 30 days. TQ was combined with the macrophage depleting drug, liposomal clodronate, in selected experiments. Effects on peritoneal tumor burden were measured by volume of ascites, number of peritoneal implants and mesenteric tumor mass. NF-κB reporter activity and markers of proliferation and apoptosis were measured in tumors and in confirmatory in vitro experiments. Protein or mRNA expression of M1 (anti-tumor) and M2 (pro-tumor) macrophage markers, and soluble cytokine profiles, were examined from harvested ascites fluid, peritoneal lavages and/or tumor sections. 2-tailed Mann-Whitney tests were used for measuring differences between groups in in vivo experiments.
RESULTS - Consistent with its effects in vitro, TQ reduced proliferation and increased apoptosis in ID8-NGL tumors after 10 and 30 day treatment. Prolonged TQ treatment did not significantly alter tumor number or mass compared to vehicle, but rather exerted an overall deleterious effect by stimulating ascites formation. Increased ascites was accompanied by elevated NF-κB activity in tumors and macrophages, increased pro-tumor M2 macrophages and expression of pro-tumorigenic soluble factors such as VEGF in ascites fluid, and increased tumor infiltration of M2 macrophages. In contrast, a 10 day exposure to TQ produced no ascites, and reduced tumor NF-κB activity, M2 macrophages and soluble VEGF levels. Peritoneal macrophage depletion by clodronate significantly reduced tumor burden. However, TQ-stimulated ascites was further enhanced by co-treatment with clodronate, with macrophages present overwhelmingly of the M2 phenotype.
CONCLUSIONS - Our findings show that pro-tumorigenic microenvironmental effects limited the efficacy of TQ in a syngeneic mouse model of ovarian cancer, and provide caution regarding its potential use in clinical trials in ovarian cancer patients.
0 Communities
3 Members
0 Resources
13 MeSH Terms
Suppression of the GTPase-activating protein RGS10 increases Rheb-GTP and mTOR signaling in ovarian cancer cells.
Altman MK, Alshamrani AA, Jia W, Nguyen HT, Fambrough JM, Tran SK, Patel MB, Hoseinzadeh P, Beedle AM, Murph MM
(2015) Cancer Lett 369: 175-83
MeSH Terms: Cell Line, Tumor, Cell Survival, Female, Humans, Monomeric GTP-Binding Proteins, Neuropeptides, Ovarian Neoplasms, Phosphorylation, Protein Processing, Post-Translational, RGS Proteins, Ras Homolog Enriched in Brain Protein, Signal Transduction, TOR Serine-Threonine Kinases
Show Abstract · Added September 20, 2016
The regulator of G protein signaling 10 (RGS10) protein is a GTPase activating protein that accelerates the hydrolysis of GTP and therefore canonically inactivates G proteins, ultimately terminating signaling. Rheb is a small GTPase protein that shuttles between its GDP- and GTP-bound forms to activate mTOR. Since RGS10 suppression augments ovarian cancer cell viability, we sought to elucidate the molecular mechanism. Following RGS10 suppression in serum-free conditions, phosphorylation of mTOR, the eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), p70S6K and S6 Ribosomal Protein appear. Furthermore, suppressing RGS10 increases activated Rheb, suggesting RGS10 antagonizes mTOR signaling via the small G-protein. The effects of RGS10 suppression are enhanced after stimulating cells with the growth factor, lysophosphatidic acid, and reduced with mTOR inhibitors, temsirolimus and INK-128. Suppression of RGS10 leads to an increase in cell proliferation, even in the presence of etoposide. In summary, the RGS10 suppression increases Rheb-GTP and mTOR signaling in ovarian cancer cells. Our results suggest that RGS10 could serve in a novel, and previously unknown, role by accelerating the hydrolysis of GTP from Rheb in ovarian cancer cells.
Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Are clear cell carcinomas of the ovary and endometrium phenotypically identical? A proteomic analysis.
Fata CR, Seeley EH, Desouki MM, Du L, Gwin K, Hanley KZ, Hecht JL, Jarboe EA, Liang SX, Parkash V, Quick CM, Zheng W, Shyr Y, Caprioli RM, Fadare O
(2015) Hum Pathol 46: 1427-36
MeSH Terms: Adenocarcinoma, Clear Cell, Adult, Aged, Aged, 80 and over, Algorithms, Biomarkers, Tumor, Chromatography, Liquid, Endometrial Neoplasms, Female, Humans, Immunohistochemistry, Middle Aged, Ovarian Neoplasms, Phenotype, Proteomics, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Tandem Mass Spectrometry, Tissue Array Analysis
Show Abstract · Added October 15, 2015
Phenotypic differences between otherwise similar tumors arising from different gynecologic locations may be highly significant in understanding the underlying driver molecular events at each site and may potentially offer insights into differential responses to treatment. In this study, the authors sought to identify and quantify phenotypic differences between ovarian clear cell carcinoma (OCCC) and endometrial clear cell carcinoma (ECCC) using a proteomic approach. Tissue microarrays were constructed from tumor samples of 108 patients (54 ECCCs and 54 OCCCs). Formalin-fixed samples on microarray slides were analyzed by matrix-assisted laser desorption/ionization mass spectrometry, and 730 spectral peaks were generated from the combined data set. A linear mixed-effect model with random intercept was used to generate 93 (12.7%) peaks that were significantly different between OCCCs and ECCCs at the fold cutoffs of 1.5 and 0.667 and an adjusted P value cutoff of 1.0 × 10(-10). Liquid chromatography-tandem mass spectrometry was performed on selected cores from each group, and peptides identified therefrom were compared with lists of statistically significant peaks from the aforementioned linear mixed-effects model to find matches within 0.2 Da. A total of 53 candidate proteins were thus identified as being differentially expressed in OCCCs and ECCCs, 45 (85%) of which were expressed at higher levels in ECCCs than OCCCs. These proteins were functionally diverse and did not highlight a clearly dominant cellular theme or molecular pathway. Although ECCCs and OCCCs are very similar, some phenotypic differences are demonstrable. Additional studies of these differentially expressed proteins may ultimately clarify the significance of these differences.
Copyright © 2015. Published by Elsevier Inc.
1 Communities
1 Members
0 Resources
18 MeSH Terms
Small molecule inhibitor of the bone morphogenetic protein pathway DMH1 reduces ovarian cancer cell growth.
Hover LD, Young CD, Bhola NE, Wilson AJ, Khabele D, Hong CC, Moses HL, Owens P
(2015) Cancer Lett 368: 79-87
MeSH Terms: Antineoplastic Agents, Bone Morphogenetic Protein Receptors, Bone Morphogenetic Proteins, Cell Proliferation, Cisplatin, Disease-Free Survival, Drug Resistance, Neoplasm, Female, Gene Expression Regulation, Neoplastic, Humans, Ovarian Neoplasms, Pyrazoles, Quinolines, Signal Transduction, Spheroids, Cellular, Tumor Cells, Cultured
Show Abstract · Added August 4, 2015
The bone morphogenetic protein (BMP) pathway belonging to the Transforming Growth Factor beta (TGFβ) family of secreted cytokines/growth factors is an important regulator of cancer. BMP ligands have been shown to play both tumor suppressive and promoting roles in human cancers. We have found that BMP ligands are amplified in human ovarian cancers and that BMP receptor expression correlates with poor progression-free-survival (PFS). Furthermore, active BMP signaling has been observed in human ovarian cancer tissue. We also determined that ovarian cancer cell lines have active BMP signaling in a cell autonomous fashion. Inhibition of BMP signaling with a small molecule receptor kinase antagonist is effective at reducing ovarian tumor sphere growth. Furthermore, BMP inhibition can enhance sensitivity to Cisplatin treatment and regulates gene expression involved in platinum resistance in ovarian cancer. Overall, these studies suggest targeting the BMP pathway as a novel source to enhance chemo-sensitivity in ovarian cancer.
Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
2 Communities
4 Members
0 Resources
16 MeSH Terms
Thymoquinone enhances cisplatin-response through direct tumor effects in a syngeneic mouse model of ovarian cancer.
Wilson AJ, Saskowski J, Barham W, Yull F, Khabele D
(2015) J Ovarian Res 8: 46
MeSH Terms: Animals, Apoptosis, Benzoquinones, Caspase 3, Cell Line, Tumor, Cell Proliferation, Cell Survival, Cisplatin, Disease Models, Animal, Female, Gene Expression Regulation, Neoplastic, Humans, Mice, NF-kappa B, Ovarian Neoplasms, Tumor Necrosis Factor-alpha
Show Abstract · Added October 6, 2015
BACKGROUND - Ovarian cancer is the most lethal gynecologic malignancy characterized by the frequent development of resistance to platinum chemotherapy. Finding new drug combinations to overcome platinum resistance is a key clinical challenge. Thymoquinone (TQ) is a component of black seed oil that exerts multiple anti-tumorigenic effects on cells, including inhibition of NF-κB and promotion of DNA damage. We aimed to determine whether TQ enhances cisplatin cytotoxicity in cultured ovarian cancer cells and in an established murine syngeneic model of ovarian cancer.
METHODS - Ovarian cancer cell viability in vitro was measured by sulforhodamine B (SRB) assays, and drug interactions tested for synergism by isobologram analysis. ID8-NGL mouse ovarian cancer cells stably expressing an NF-κB reporter transgene were injected intra-peritoneally into C57BL/6 mice. After 30 day TQ and/or cisplatin treatment, we measured the following indices: tumor burden (ascites volume, number of peritoneal implants and mesenteric tumor mass); NF-κB reporter activity (luciferase assay); protein expression of the double-strand DNA break marker, pH2AX(ser139), the proliferation markers, Ki67/mib-1 and PCNA, and the apoptosis markers, cleaved caspase-3, cleaved PARP and Bax; and mRNA expression of NF-κB targets, TNF-α and IL-1β. Two-tailed Mann-Whitney tests were used for measuring differences between groups in mouse experiments.
RESULTS - In SRB assays, TQ and cisplatin synergized in ID8-NGL cells. In mice, cisplatin significantly reduced cell proliferation and increased apoptosis in tumors, resulting in decreased overall tumor burden. Combining TQ with cisplatin further decreased these indices, indicating co-operative effects between the drugs. TQ treatment promoted cisplatin-induced pH2AX expression in cultured cells and in tumors. While NF-κB inhibition by TQ induced anti-tumor effects in vitro, we made the unexpected observation that TQ alone increased both tumor NF-κB activity and formation of ascites in vivo.
CONCLUSIONS - TQ enhanced cisplatin-mediated cytoxicity in ovarian cancer cells in vitro and in a mouse syngeneic model, effects associated with increased DNA damage. However, our results strongly caution that TQ treatment alone may have an overall deleterious effect in the immunocompetent host through stimulation of ascites. Since TQ is a potential candidate for future clinical trials in ovarian cancer patients, this finding has considerable potential relevance to the clinic.
0 Communities
4 Members
0 Resources
16 MeSH Terms
Aberrant over-expression of COX-1 intersects multiple pro-tumorigenic pathways in high-grade serous ovarian cancer.
Wilson AJ, Fadare O, Beeghly-Fadiel A, Son DS, Liu Q, Zhao S, Saskowski J, Uddin MJ, Daniel C, Crews B, Lehmann BD, Pietenpol JA, Crispens MA, Marnett LJ, Khabele D
(2015) Oncotarget 6: 21353-68
MeSH Terms: Carcinoma, Ovarian Epithelial, Cell Line, Tumor, Cell Movement, Cell Proliferation, Computational Biology, Cyclooxygenase 1, Female, Gene Expression Profiling, Gene Expression Regulation, Enzymologic, Gene Expression Regulation, Neoplastic, Genome, Human, Humans, Immunohistochemistry, Neoplasm Invasiveness, Neoplasms, Glandular and Epithelial, Neovascularization, Pathologic, Oligonucleotide Array Sequence Analysis, Ovarian Neoplasms, Signal Transduction
Show Abstract · Added July 28, 2015
Cyclooxygenase-1 (COX-1) is implicated in ovarian cancer. However, patterns of COX expression and function have been unclear and controversial. In this report, patterns of COX-1 and COX-2 gene expression were obtained from RNA-seq data through The Cancer Genome Atlas. Our analysis revealed markedly higher COX-1 mRNA expression than COX-2 in high-grade serous ovarian cancers (HGSOC) and higher COX-1 expression in HGSOC tumors than 10 other tumor types. High expression of COX-1 in HGSOC tumors was confirmed in an independent tissue microarray. In contrast, lower or similar expression of COX-1 compared to COX-2 was observed in endometrioid, mucinous and clear cell tumors. Stable COX-1 knockdown in HGSOC-representative OVCAR-3 ovarian cancer cells reduced gene expression in multiple pro-tumorigenic pathways. Functional cell viability, clonogenicity, and migration/invasion assays were consistent with transcriptomic changes. These effects were reversed by stable over-expression of COX-1 in SKOV-3 cells. Our results demonstrate a distinct pattern of COX-1 over-expression in HGSOC tumors and strong association of COX-1 with multiple pro-tumorigenic pathways in ovarian cancer cells. These findings provide additional insight into the role of COX-1 in human ovarian cancer and support further development of methods to selectively target COX-1 in the management of HGSOC tumors.
1 Communities
6 Members
0 Resources
19 MeSH Terms