Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 57

Publication Record


Fabrication of 3D Scaffolds with Precisely Controlled Substrate Modulus and Pore Size by Templated-Fused Deposition Modeling to Direct Osteogenic Differentiation.
Guo R, Lu S, Page JM, Merkel AR, Basu S, Sterling JA, Guelcher SA
(2015) Adv Healthc Mater 4: 1826-32
MeSH Terms: Animals, Cell Differentiation, Cell Movement, Cell Proliferation, Cells, Cultured, Mesenchymal Stem Cells, Osteogenesis, Rats, Rats, Sprague-Dawley, Tissue Scaffolds
Show Abstract · Added February 23, 2016
Scaffolds with tunable mechanical and topological properties fabricated by templated-fused deposition modeling promote increased osteogenic differentiation of bone marrow stem cells with increasing substrate modulus and decreasing pore size. These findings guide the rational design of cell-responsive scaffolds that recapitulate the bone microenvironment for repair of bone damaged by trauma or disease.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1 Communities
2 Members
0 Resources
10 MeSH Terms
A transient cell-shielding method for viable MSC delivery within hydrophobic scaffolds polymerized in situ.
Guo R, Ward CL, Davidson JM, Duvall CL, Wenke JC, Guelcher SA
(2015) Biomaterials 54: 21-33
MeSH Terms: 3T3 Cells, Animals, Cell Adhesion, Cell Survival, Cells, Cultured, Equipment Design, Equipment Failure Analysis, Guided Tissue Regeneration, Hydrophobic and Hydrophilic Interactions, Lacerations, Male, Mesenchymal Stem Cell Transplantation, Mesenchymal Stem Cells, Mice, Polymers, Rats, Rats, Sprague-Dawley, Skin, Tissue Scaffolds
Show Abstract · Added February 23, 2016
Cell-based therapies have emerged as promising approaches for regenerative medicine. Hydrophobic poly(ester urethane)s offer the advantages of robust mechanical properties, cell attachment without the use of peptides, and controlled degradation by oxidative and hydrolytic mechanisms. However, the application of injectable hydrophobic polymers to cell delivery is limited by the challenges of protecting cells from reaction products and creating a macroporous architecture post-cure. We designed injectable carriers for cell delivery derived from reactive, hydrophobic polyisocyanate and polyester triol precursors. To overcome cell death caused by reaction products from in situ polymerization, we encapsulated bone marrow-derived stem cells (BMSCs) in fastdegrading, oxidized alginate beads prior to mixing with the hydrophobic precursors. Cells survived the polymerization at >70% viability, and rapid dissolution of oxidized alginate beads after the scaffold cured created interconnected macropores that facilitated cellular adhesion to the scaffold in vitro. Applying this injectable system to deliver BMSCs to rat excisional skin wounds showed that the scaffolds supported survival of transplanted cells and infiltration of host cells, which improved new tissue formation compared to both implanted, pre-formed scaffolds seeded with cells and acellular controls. Our design is the first to enable injectable delivery of settable, hydrophobic scaffolds where cell encapsulation provides a mechanism for both temporary cytoprotection during polymerization and rapid formation of macropores post-polymerization. This simple approach provides potential advantages for cell delivery relative to hydrogel technologies, which have weaker mechanical properties and require incorporation of peptides to achieve cell adhesion and degradability.
Copyright © 2015 Elsevier Ltd. All rights reserved.
1 Communities
2 Members
0 Resources
19 MeSH Terms
Static and cyclic mechanical loading of mesenchymal stem cells on elastomeric, electrospun polyurethane meshes.
Cardwell RD, Kluge JA, Thayer PS, Guelcher SA, Dahlgren LA, Kaplan DL, Goldstein AS
(2015) J Biomech Eng 137:
MeSH Terms: Animals, Biocompatible Materials, Cell Count, Cell Line, Cell Survival, Elasticity, Gene Expression Regulation, Materials Testing, Membrane Proteins, Mesenchymal Stem Cells, Mice, Polyurethanes, Stress, Mechanical, Surface Properties, Tenascin, Tensile Strength, Weight-Bearing
Show Abstract · Added February 23, 2016
Biomaterial substrates composed of semi-aligned electrospun fibers are attractive supports for the regeneration of connective tissues because the fibers are durable under cyclic tensile loads and can guide cell adhesion, orientation, and gene expression. Previous studies on supported electrospun substrates have shown that both fiber diameter and mechanical deformation can independently influence cell morphology and gene expression. However, no studies have examined the effect of mechanical deformation and fiber diameter on unsupported meshes. Semi-aligned large (1.75 μm) and small (0.60 μm) diameter fiber meshes were prepared from degradable elastomeric poly(esterurethane urea) (PEUUR) meshes and characterized by tensile testing and scanning electron microscopy (SEM). Next, unsupported meshes were aligned between custom grips (with the stretch axis oriented parallel to axis of fiber alignment), seeded with C3H10T1/2 cells, and subjected to a static load (50 mN, adjusted daily), a cyclic load (4% strain at 0.25 Hz for 30 min, followed by a static tensile loading of 50 mN, daily), or no load. After 3 days of mechanical stimulation, confocal imaging was used to characterize cell shape, while measurements of deoxyribonucleic acid (DNA) content and messenger ribonucleic acid (mRNA) expression were used to characterize cell retention on unsupported meshes and expression of the connective tissue phenotype. Mechanical testing confirmed that these materials deform elastically to at least 10%. Cells adhered to unsupported meshes under all conditions and aligned with the direction of fiber orientation. Application of static and cyclic loads increased cell alignment. Cell density and mRNA expression of connective tissue proteins were not statistically different between experimental groups. However, on large diameter fiber meshes, static loading slightly elevated tenomodulin expression relative to the no load group, and tenascin-C and tenomodulin expression relative to the cyclic load group. These results demonstrate the feasibility of maintaining cell adhesion and alignment on semi-aligned fibrous elastomeric substrates under different mechanical conditions. The study confirms that cell morphology is sensitive to the mechanical environment and suggests that expression of select connective tissue genes may be enhanced on large diameter fiber meshes under static tensile loads.
1 Communities
1 Members
0 Resources
17 MeSH Terms
Conjugation of palmitic acid improves potency and longevity of siRNA delivered via endosomolytic polymer nanoparticles.
Sarett SM, Kilchrist KV, Miteva M, Duvall CL
(2015) J Biomed Mater Res A 103: 3107-16
MeSH Terms: Animals, Biocompatible Materials, Biological Transport, Active, Drug Delivery Systems, Endosomes, Gene Silencing, HEK293 Cells, Humans, Materials Testing, Mesenchymal Stem Cells, Mice, Mice, Inbred C57BL, NIH 3T3 Cells, Nanoparticles, Palmitic Acid, Polymers, RNA, Small Interfering
Show Abstract · Added March 14, 2018
Clinical translation of siRNA therapeutics has been limited by the inability to effectively overcome the rigorous delivery barriers associated with intracellular-acting biologics. Here, to address both potency and longevity of siRNA gene silencing, pH-responsive micellar nanoparticle (NP) carriers loaded with siRNA conjugated to palmitic acid (siRNA-PA) were investigated as a combined approach to improve siRNA endosomal escape and stability. Conjugation to hydrophobic PA improved NP loading efficiency relative to unmodified siRNA, enabling complete packaging of siRNA-PA at a lower polymer:siRNA ratio. PA conjugation also increased intracellular uptake of the nucleic acid cargo by 35-fold and produced a 3.1-fold increase in intracellular half-life. The higher uptake and improved retention of siRNA-PA NPs correlated to a 2- and 11-fold decrease in gene silencing IC50 in comparison to siRNA NPs in fibroblasts and mesenchymal stem cells, respectively, for both the model gene luciferase and the therapeutically relevant gene prolyl hydroxylase domain protein 2 (PHD2) . PA conjugation also significantly increased longevity of silencing activity following a single treatment in fibroblasts. Thus, conjugation of PA to siRNA paired with endosomolytic NPs is a promising approach to enhance the functional efficacy of siRNA in tissue regenerative and other applications.
Copyright © 2015 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
17 MeSH Terms
ABCG2pos lung mesenchymal stem cells are a novel pericyte subpopulation that contributes to fibrotic remodeling.
Marriott S, Baskir RS, Gaskill C, Menon S, Carrier EJ, Williams J, Talati M, Helm K, Alford CE, Kropski JA, Loyd J, Wheeler L, Johnson J, Austin E, Nozik-Grayck E, Meyrick B, West JD, Klemm DJ, Majka SM
(2014) Am J Physiol Cell Physiol 307: C684-98
MeSH Terms: ATP Binding Cassette Transporter, Subfamily G, Member 2, ATP-Binding Cassette Transporters, Animals, Cells, Cultured, Humans, Lung, Mesenchymal Stem Cells, Mice, Myofibroblasts, Neoplasm Proteins, Pericytes, Pulmonary Fibrosis, Transforming Growth Factor beta1
Show Abstract · Added January 20, 2015
Genesis of myofibroblasts is obligatory for the development of pathology in many adult lung diseases. Adult lung tissue contains a population of perivascular ABCG2(pos) mesenchymal stem cells (MSC) that are precursors of myofibroblasts and distinct from NG2 pericytes. We hypothesized that these MSC participate in deleterious remodeling associated with pulmonary fibrosis (PF) and associated hypertension (PH). To test this hypothesis, resident lung MSC were quantified in lung samples from control subjects and PF patients. ABCG2(pos) cell numbers were decreased in human PF and interstitial lung disease compared with control samples. Genetic labeling of lung MSC in mice enabled determination of terminal lineage and localization of ABCG2 cells following intratracheal administration of bleomycin to elicit fibrotic lung injury. Fourteen days following bleomycin injury enhanced green fluorescent protein (eGFP)-labeled lung MSC-derived cells were increased in number and localized to interstitial areas of fibrotic and microvessel remodeling. Finally, gene expression analysis was evaluated to define the response of MSC to bleomycin injury in vivo using ABCG2(pos) MSC isolated during the inflammatory phase postinjury and in vitro bleomycin or transforming growth factor-β1 (TGF-β1)-treated cells. MSC responded to bleomycin treatment in vivo with a profibrotic gene program that was not recapitulated in vitro with bleomycin treatment. However, TGF-β1 treatment induced the appearance of a profibrotic myofibroblast phenotype in vitro. Additionally, when exposed to the profibrotic stimulus, TGF-β1, ABCG2, and NG2 pericytes demonstrated distinct responses. Our data highlight ABCG2(pos) lung MSC as a novel cell population that contributes to detrimental myofibroblast-mediated remodeling during PF.
Copyright © 2014 the American Physiological Society.
2 Communities
5 Members
0 Resources
13 MeSH Terms
Dissecting the role of bone marrow stromal cells on bone metastases.
Buenrostro D, Park SI, Sterling JA
(2014) Biomed Res Int 2014: 875305
MeSH Terms: Bone Neoplasms, Bone and Bones, Fibroblasts, Humans, Immune System, Mesenchymal Stem Cells, Neoplasm Metastasis, Neoplasms, Osteoblasts, Osteoclasts, Tumor Microenvironment
Show Abstract · Added February 12, 2015
Tumor-induced bone disease is a dynamic process that involves interactions with many cell types. Once metastatic cancer cells reach the bone, they are in contact with many different cell types that are present in the cell-rich bone marrow. These cells include the immune cells, myeloid cells, fibroblasts, osteoblasts, osteoclasts, and mesenchymal stem cells. Each of these cell populations can influence the behavior or gene expression of both the tumor cells and the bone microenvironment. Additionally, the tumor itself can alter the behavior of these bone marrow cells which further alters both the microenvironment and the tumor cells. While many groups focus on studying these interactions, much remains unknown. A better understanding of the interactions between the tumor cells and the bone microenvironment will improve our knowledge on how tumors establish in bone and may lead to improvements in diagnosing and treating bone metastases. This review details our current knowledge on the interactions between tumor cells that reside in bone and their microenvironment.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Combined MEK inhibition and BMP2 treatment promotes osteoblast differentiation and bone healing in Nf1Osx -/- mice.
de la Croix Ndong J, Stevens DM, Vignaux G, Uppuganti S, Perrien DS, Yang X, Nyman JS, Harth E, Elefteriou F
(2015) J Bone Miner Res 30: 55-63
MeSH Terms: Animals, Bone Morphogenetic Protein 2, Bone Regeneration, Cell Differentiation, Disease Models, Animal, Drug Delivery Systems, Humans, MAP Kinase Kinase Kinases, Mesenchymal Stem Cells, Mice, Mice, Knockout, Nanoparticles, Neurofibromatosis 1, Neurofibromin 1, Protein Kinase Inhibitors, Pseudarthrosis, Pyridones, Pyrimidinones
Show Abstract · Added July 28, 2014
Neurofibromatosis type I (NF1) is an autosomal dominant disease with an incidence of 1/3000, caused by mutations in the NF1 gene, which encodes the RAS/GTPase-activating protein neurofibromin. Non-bone union after fracture (pseudarthrosis) in children with NF1 remains a challenging orthopedic condition to treat. Recent progress in understanding the biology of neurofibromin suggested that NF1 pseudarthrosis stems primarily from defects in the bone mesenchymal lineage and hypersensitivity of hematopoietic cells to TGFβ. However, clinically relevant pharmacological approaches to augment bone union in these patients remain limited. In this study, we report the generation of a novel conditional mutant mouse line used to model NF1 pseudoarthrosis, in which Nf1 can be ablated in an inducible fashion in osteoprogenitors of postnatal mice, thus circumventing the dwarfism associated with previous mouse models where Nf1 is ablated in embryonic mesenchymal cell lineages. An ex vivo-based cell culture approach based on the use of Nf1(flox/flox) bone marrow stromal cells showed that loss of Nf1 impairs osteoprogenitor cell differentiation in a cell-autonomous manner, independent of developmental growth plate-derived or paracrine/hormonal influences. In addition, in vitro gene expression and differentiation assays indicated that chronic ERK activation in Nf1-deficient osteoprogenitors blunts the pro-osteogenic property of BMP2, based on the observation that only combination treatment with BMP2 and MEK inhibition promoted the differentiation of Nf1-deficient osteoprogenitors. The in vivo preclinical relevance of these findings was confirmed by the improved bone healing and callus strength observed in Nf1osx (-/-) mice receiving Trametinib (a MEK inhibitor) and BMP2 released locally at the fracture site via a novel nanoparticle and polyglycidol-based delivery method. Collectively, these results provide novel evidence for a cell-autonomous role of neurofibromin in osteoprogenitor cells and insights about a novel targeted approach for the treatment of NF1 pseudoarthrosis.
© 2014 American Society for Bone and Mineral Research.
2 Communities
6 Members
0 Resources
18 MeSH Terms
Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer.
Jovanović B, Beeler JS, Pickup MW, Chytil A, Gorska AE, Ashby WJ, Lehmann BD, Zijlstra A, Pietenpol JA, Moses HL
(2014) Breast Cancer Res 16: R69
MeSH Terms: Animals, Cell Line, Tumor, Cell Movement, Cell Proliferation, Cell Survival, Cell Transformation, Neoplastic, Cluster Analysis, Disease Models, Animal, Female, Gene Expression, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Gene Knockdown Techniques, Heterografts, Humans, Integrin alpha2, Mesenchymal Stem Cells, Mice, Proteoglycans, RNA, Messenger, RNA, Small Interfering, Receptors, Transforming Growth Factor beta, Spheroids, Cellular, Triple Negative Breast Neoplasms, Tumor Burden, Tumor Cells, Cultured
Show Abstract · Added July 10, 2014
INTRODUCTION - There is a major need to better understand the molecular basis of triple negative breast cancer (TNBC) in order to develop effective therapeutic strategies. Using gene expression data from 587 TNBC patients we previously identified six subtypes of the disease, among which a mesenchymal-stem like (MSL) subtype. The MSL subtype has significantly higher expression of the transforming growth factor beta (TGF-β) pathway-associated genes relative to other subtypes, including the TGF-β receptor type III (TβRIII). We hypothesize that TβRIII is tumor promoter in mesenchymal-stem like TNBC cells.
METHODS - Representative MSL cell lines SUM159, MDA-MB-231 and MDA-MB-157 were used to study the roles of TβRIII in the MSL subtype. We stably expressed short hairpin RNAs specific to TβRIII (TβRIII-KD). These cells were then used for xenograft tumor studies in vivo; and migration, invasion, proliferation and three dimensional culture studies in vitro. Furthermore, we utilized human gene expression datasets to examine TβRIII expression patterns across all TNBC subtypes.
RESULTS - TβRIII was the most differentially expressed TGF-β signaling gene in the MSL subtype. Silencing TβRIII expression in MSL cell lines significantly decreased cell motility and invasion. In addition, when TβRIII-KD cells were grown in a three dimensional (3D) culture system or nude mice, there was a loss of invasive protrusions and a significant decrease in xenograft tumor growth, respectively. In pursuit of the mechanistic underpinnings for the observed TβRIII-dependent phenotypes, we discovered that integrin-α2 was expressed at higher level in MSL cells after TβRIII-KD. Stable knockdown of integrin-α2 in TβRIII-KD MSL cells rescued the ability of the MSL cells to migrate and invade at the same level as MSL control cells.
CONCLUSIONS - We have found that TβRIII is required for migration and invasion in vitro and xenograft growth in vivo. We also show that TβRIII-KD elevates expression of integrin-α2, which is required for the reduced migration and invasion, as determined by siRNA knockdown studies of both TβRIII and integrin-α2. Overall, our results indicate a potential mechanism in which TβRIII modulates integrin-α2 expression to effect MSL cell migration, invasion, and tumorigenicity.
1 Communities
4 Members
0 Resources
26 MeSH Terms
Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation.
Omatsu Y, Seike M, Sugiyama T, Kume T, Nagasawa T
(2014) Nature 508: 536-40
MeSH Terms: Adipocytes, Animals, Bone Marrow Cells, Cell Count, Cell Differentiation, Chemokine CXCL12, Embryonic Development, Forkhead Transcription Factors, Hematopoietic Stem Cells, Mesenchymal Stem Cells, Mice, Osteoblasts, Stem Cell Factor, Stem Cell Niche
Show Abstract · Added January 23, 2015
Haematopoietic stem and progenitor cells are maintained by special microenvironments known as niches in bone marrow. Many studies have identified diverse candidate cells that constitute niches for haematopoietic stem cells in the marrow, including osteoblasts, endothelial cells, Schwann cells, α-smooth muscle actin-expressing macrophages and mesenchymal progenitors such as CXC chemokine ligand (CXCL)12-abundant reticular (CAR) cells, stem cell factor-expressing cells, nestin-expressing cells and platelet-derived growth factor receptor-α (PDGFR-α)(+)Sca-1(+)CD45(-)Ter119(-) (PαS) cells. However, the molecular basis of the formation of the niches remains unclear. Here we find that the transcription factor Foxc1 is preferentially expressed in the adipo-osteogenic progenitor CAR cells essential for haematopoietic stem and progenitor cell maintenance in vivo in the developing and adult bone marrow. When Foxc1 was deleted in all marrow mesenchymal cells or CAR cells, from embryogenesis onwards, osteoblasts appeared normal, but haematopoietic stem and progenitor cells were markedly reduced and marrow cavities were occupied by adipocytes (yellow adipose marrow) with reduced CAR cells. Inducible deletion of Foxc1 in adult mice depleted haematopoietic stem and progenitor cells and reduced CXCL12 and stem cell factor expression in CAR cells but did not induce a change to yellow marrow. These data suggest a role for Foxc1 in inhibiting adipogenic processes in CAR progenitors. Foxc1 might also promote CAR cell development, upregulating CXCL12 and stem cell factor expression. This study identifies Foxc1 as a specific transcriptional regulator essential for development and maintenance of the mesenchymal niches for haematopoietic stem and progenitor cells.
1 Communities
0 Members
0 Resources
14 MeSH Terms
Role of adenosine A2B receptor signaling in contribution of cardiac mesenchymal stem-like cells to myocardial scar formation.
Ryzhov S, Sung BH, Zhang Q, Weaver A, Gumina RJ, Biaggioni I, Feoktistov I
(2014) Purinergic Signal 10: 477-86
MeSH Terms: Animals, Cell Line, Transformed, Cicatrix, Mesenchymal Stem Cells, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Myocardium, Receptor, Adenosine A2B, Signal Transduction
Show Abstract · Added March 20, 2014
Adenosine levels increase in ischemic hearts and contribute to the modulation of that pathological environment. We previously showed that A2B adenosine receptors on mouse cardiac Sca1(+)CD31(-) mesenchymal stromal cells upregulate secretion of paracrine factors that may contribute to the improvement in cardiac recovery seen when these cells are transplanted in infarcted hearts. In this study, we tested the hypothesis that A2B receptor signaling regulates the transition of Sca1(+)CD31(-) cells, which occurs after myocardial injury, into a myofibroblast phenotype that promotes myocardial repair and remodeling. In vitro, TGFβ1 induced the expression of the myofibroblast marker α-smooth muscle actin (αSMA) and increased collagen I generation in Sca1(+)CD31(-) cells. Stimulation of A2B receptors attenuated TGFβ1-induced collagen I secretion but had no effect on αSMA expression. In vivo, myocardial infarction resulted in a rapid increase in the numbers of αSMA-positive cardiac stromal cells by day 5 followed by a gradual decline. Genetic deletion of A2B receptors had no effect on the initial accumulation of αSMA-expressing stromal cells but hastened their subsequent decline; the numbers of αSMA-positive cells including Sca1(+)CD31(-) cells remained significantly higher in wild type compared with A2B knockout hearts. Thus, our study revealed a significant contribution of cardiac Sca1(+)CD31(-) cells to the accumulation of αSMA-expressing cells after infarction and implicated A2B receptor signaling in regulation of myocardial repair and remodeling by delaying deactivation of these cells. It is plausible that this phenomenon may contribute to the beneficial effects of transplantation of these cells to the injured heart.
0 Communities
3 Members
0 Resources
11 MeSH Terms