Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 1876

Publication Record

Connections

Peripherally delivered hepatopreferential insulin analog insulin-406 mimics the hypoglycaemia-sparing effect of portal vein human insulin infusion in dogs.
Gregory JM, Kraft G, Scott MF, Neal DW, Farmer B, Smith MS, Hastings JR, Madsen P, Kjeldsen TB, Hostrup S, Brand CL, Fledelius C, Nishimura E, Cherrington AD
(2019) Diabetes Obes Metab 21: 2294-2304
MeSH Terms: Animals, Blood Glucose, Diabetes Mellitus, Type 1, Dogs, Gluconeogenesis, Humans, Hypoglycemia, Hypoglycemic Agents, Infusions, Intravenous, Insulin, Insulin, Regular, Human, Liver, Male, Portal Vein
Show Abstract · Added June 26, 2019
AIMS - We previously quantified the hypoglycaemia-sparing effect of portal vs peripheral human insulin delivery. The current investigation aimed to determine whether a bioequivalent peripheral vein infusion of a hepatopreferential insulin analog, insulin-406, could similarly protect against hypoglycaemia.
MATERIALS AND METHODS - Dogs received human insulin infusions into either the hepatic portal vein (PoHI, n = 7) or a peripheral vein (PeHI, n = 7) for 180 minutes at four-fold the basal secretion rate (6.6 pmol/kg/min) in a previous study. Insulin-406 (Pe406, n = 7) was peripherally infused at 6.0 pmol/kg/min, a rate determined to decrease plasma glucose by the same amount as with PoHI infusion during the first 60 minutes. Glucagon was fixed at basal concentrations, mimicking the diminished α-cell response seen in type 1 diabetes.
RESULTS - Glucose dropped quickly with PeHI infusion, reaching 41 ± 3 mg/dL at 60 minutes, but more slowly with PoHI and Pe406 infusion (67 ± 2 and 72 ± 4 mg/dL, respectively; P < 0.01 vs PeHI for both). The hypoglycaemic nadir (c. 40 mg/dL) occurred at 60 minutes with PeHI infusion vs 120 minutes with PoHI and Pe406 infusion. ΔAUC during the 180-minute insulin infusion period was two-fold higher with PeHI infusion compared with PoHI and Pe406 infusion. Glucose production (mg/kg/min) was least suppressed with PeHI infusion (Δ = 0.79 ± 0.33) and equally suppressed with PoHI and Pe406 infusion (Δ = 1.16 ± 0.21 and 1.18 ± 0.17, respectively; P = NS). Peak glucose utilization (mg/kg/min) was highest with PeHI infusion (4.94 ± 0.17) and less with PoHI and Pe406 infusion (3.58 ± 0.58 and 3.26 ± 0.08, respectively; P < 0.05 vs Pe for both).
CONCLUSIONS - Peripheral infusion of hepatopreferential insulin can achieve a metabolic profile that closely mimics portal insulin delivery, which reduces the risk of hypoglycaemia compared with peripheral insulin infusion.
© 2019 John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Shared Genetic Risk Factors Across Carbamazepine-Induced Hypersensitivity Reactions.
Nicoletti P, Barrett S, McEvoy L, Daly AK, Aithal G, Lucena MI, Andrade RJ, Wadelius M, Hallberg P, Stephens C, Bjornsson ES, Friedmann P, Kainu K, Laitinen T, Marson A, Molokhia M, Phillips E, Pichler W, Romano A, Shear N, Sills G, Tanno LK, Swale A, Floratos A, Shen Y, Nelson MR, Watkins PB, Daly MJ, Morris AP, Alfirevic A, Pirmohamed M
(2019) Clin Pharmacol Ther 106: 1028-1036
MeSH Terms: Adult, Anaplastic Lymphoma Kinase, Carbamazepine, Chemical and Drug Induced Liver Injury, Drug Hypersensitivity, Drug Hypersensitivity Syndrome, Europe, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, HLA-A Antigens, HLA-B Antigens, Humans, Male, Phenotype, Risk Factors, Stevens-Johnson Syndrome
Show Abstract · Added March 30, 2020
Carbamazepine (CBZ) causes life-threating T-cell-mediated hypersensitivity reactions, including serious cutaneous adverse reactions (SCARs) and drug-induced liver injury (CBZ-DILI). In order to evaluate shared or phenotype-specific genetic predisposing factors for CBZ hypersensitivity reactions, we performed a meta-analysis of two genomewide association studies (GWAS) on a total of 43 well-phenotyped Northern and Southern European CBZ-SCAR cases and 10,701 population controls and a GWAS on 12 CBZ-DILI cases and 8,438 ethnically matched population controls. HLA-A*31:01 was identified as the strongest genetic predisposing factor for both CBZ-SCAR (odds ratio (OR) = 8.0; 95% CI 4.10-15.80; P = 1.2 × 10 ) and CBZ-DILI (OR = 7.3; 95% CI 2.47-23.67; P = 0.0004) in European populations. The association with HLA-A*31:01 in patients with SCAR was mainly driven by hypersensitivity syndrome (OR = 12.9; P = 2.1 × 10 ) rather than by Stevens-Johnson syndrome/toxic epidermal necrolysis cases, which showed an association with HLA-B*57:01. We also identified a novel risk locus mapping to ALK only for CBZ-SCAR cases, which needs replication in additional cohorts and functional evaluation.
© 2019 The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Mechanistic identification of biofluid metabolite changes as markers of acetaminophen-induced liver toxicity in rats.
Pannala VR, Vinnakota KC, Rawls KD, Estes SK, O'Brien TP, Printz RL, Papin JA, Reifman J, Shiota M, Young JD, Wallqvist A
(2019) Toxicol Appl Pharmacol 372: 19-32
MeSH Terms: Acetaminophen, Animals, Biomarkers, Chemical and Drug Induced Liver Injury, Disease Models, Animal, Early Diagnosis, Liver, Male, Metabolomics, Predictive Value of Tests, Rats, Sprague-Dawley, Time Factors
Show Abstract · Added March 5, 2020
Acetaminophen (APAP) is the most commonly used analgesic and antipyretic drug in the world. Yet, it poses a major risk of liver injury when taken in excess of the therapeutic dose. Current clinical markers do not detect the early onset of liver injury associated with excess APAP-information that is vital to reverse injury progression through available therapeutic interventions. Hence, several studies have used transcriptomics, proteomics, and metabolomics technologies, both independently and in combination, in an attempt to discover potential early markers of liver injury. However, the casual relationship between these observations and their relation to the APAP mechanism of liver toxicity are not clearly understood. Here, we used Sprague-Dawley rats orally gavaged with a single dose of 2 g/kg of APAP to collect tissue samples from the liver and kidney for transcriptomic analysis and plasma and urine samples for metabolomic analysis. We developed and used a multi-tissue, metabolism-based modeling approach to integrate these data, characterize the effect of excess APAP levels on liver metabolism, and identify a panel of plasma and urine metabolites that are associated with APAP-induced liver toxicity. Our analyses, which indicated that pathways involved in nucleotide-, lipid-, and amino acid-related metabolism in the liver were most strongly affected within 10 h following APAP treatment, identified a list of potential metabolites in these pathways that could serve as plausible markers of APAP-induced liver injury. Our approach identifies toxicant-induced changes in endogenous metabolism, is applicable to other toxicants based on transcriptomic data, and provides a mechanistic framework for interpreting metabolite alterations.
Copyright © 2019 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
A Peripheral Blood DNA Methylation Signature of Hepatic Fat Reveals a Potential Causal Pathway for Nonalcoholic Fatty Liver Disease.
Ma J, Nano J, Ding J, Zheng Y, Hennein R, Liu C, Speliotes EK, Huan T, Song C, Mendelson MM, Joehanes R, Long MT, Liang L, Smith JA, Reynolds LM, Ghanbari M, Muka T, van Meurs JBJ, Alferink LJM, Franco OH, Dehghan A, Ratliff S, Zhao W, Bielak L, Kardia SLR, Peyser PA, Ning H, VanWagner LB, Lloyd-Jones DM, Carr JJ, Greenland P, Lichtenstein AH, Hu FB, Liu Y, Hou L, Darwish Murad S, Levy D
(2019) Diabetes 68: 1073-1083
MeSH Terms: Biomarkers, DNA Methylation, Diabetes Mellitus, Type 2, Fats, Female, Humans, Lipopolysaccharide Receptors, Liver, Male, Middle Aged, Non-alcoholic Fatty Liver Disease, Risk Factors
Show Abstract · Added January 10, 2020
Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D). We aimed to identify the peripheral blood DNA methylation signature of hepatic fat. We conducted epigenome-wide association studies of hepatic fat in 3,400 European ancestry (EA) participants and in 401 Hispanic ancestry and 724 African ancestry participants from four population-based cohort studies. Hepatic fat was measured using computed tomography or ultrasound imaging and DNA methylation was assessed at >400,000 cytosine-guanine dinucleotides (CpGs) in whole blood or CD14+ monocytes using a commercial array. We identified 22 CpGs associated with hepatic fat in EA participants at a false discovery rate <0.05 (corresponding = 6.9 × 10) with replication at Bonferroni-corrected < 8.6 × 10 Mendelian randomization analyses supported the association of hypomethylation of cg08309687 () with NAFLD ( = 2.5 × 10). Hypomethylation of the same CpG was also associated with risk for new-onset T2D ( = 0.005). Our study demonstrates that a peripheral blood-derived DNA methylation signature is robustly associated with hepatic fat accumulation. The hepatic fat-associated CpGs may represent attractive biomarkers for T2D. Future studies are warranted to explore mechanisms and to examine DNA methylation signatures of NAFLD across racial/ethnic groups.
© 2019 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
MeSH Terms
Preparation, preliminary pharmacokinetic and brain targeting study of metformin encapsulated W/O/W composite submicron emulsions promoted by borneol.
Hong L, Li X, Bao Y, Duvall CL, Zhang C, Chen W, Peng C
(2019) Eur J Pharm Sci 133: 160-166
MeSH Terms: Animals, Brain, Camphanes, Drug Compounding, Drug Delivery Systems, Drug Liberation, Emulsions, Female, Hypoglycemic Agents, Male, Metformin, Rats, Sprague-Dawley
Show Abstract · Added April 10, 2019
Metformin hydrochloride (Met) is the first-line drug to treat type 2 diabetes and has shown high efficiency in reducing Alzheimer's disease in recent studies. Herein, a borneol W/O/W composite submicron emulsion containing Met (B-Met-W/O/W SE) was prepared, expecting longer in-vivo circulation time, better bioavailability and brain targeting of Met drug. In the optimized formulation, the mean droplets size, polydispersity index and encapsulation efficiency of the composite were 386.5 nm, 0.219 and 87.26%, respectively. FTIR analysis confirmed that Met interacted with carriers in B-Met-W/O/W SE. Compared with Met free drug, in-vitro release of Met in B-Met-W/O/W SE delivery system was much slower. In pharmacokinetic studies in rats, the AUC, MRT and t of the B-Met-W/O/W SE system were respectively 1.27, 2.49 and 4.02-fold higher than Met free drug system. The drug-targeting index of B-Met-W/O/W SE system to the brain tissue was also higher than that of Met free drug system and Met-W/O/W SE system. These results indicated that B-Met-W/O/W SE drug delivery system is a promising candidate in treating clinical Alzheimer's disease.
Copyright © 2019 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Dysregulated transmethylation leading to hepatocellular carcinoma compromises redox homeostasis and glucose formation.
Hughey CC, James FD, Wang Z, Goelzer M, Wasserman DH
(2019) Mol Metab 23: 1-13
MeSH Terms: Animals, Carcinoma, Hepatocellular, DNA Methylation, Fatty Liver, Gene Knockout Techniques, Gluconeogenesis, Glucose, Glycine N-Methyltransferase, Homeostasis, Liver, Liver Neoplasms, Male, Methionine, Mice, Mice, Knockout, NAD, Oxidation-Reduction
Show Abstract · Added March 26, 2019
OBJECTIVE - The loss of liver glycine N-methyltransferase (GNMT) promotes liver steatosis and the transition to hepatocellular carcinoma (HCC). Previous work showed endogenous glucose production is reduced in GNMT-null mice with gluconeogenic precursors being used in alternative biosynthetic pathways that utilize methyl donors and are linked to tumorigenesis. This metabolic programming occurs before the appearance of HCC in GNMT-null mice. The metabolic physiology that sustains liver tumor formation in GNMT-null mice is unknown. The studies presented here tested the hypothesis that nutrient flux pivots from glucose production to pathways that incorporate and metabolize methyl groups in GNMT-null mice with HCC.
METHODS - H/C metabolic flux analysis was performed in conscious, unrestrained mice lacking GNMT to quantify glucose formation and associated nutrient fluxes. Molecular analyses of livers from mice lacking GNMT including metabolomic, immunoblotting, and immunochemistry were completed to fully interpret the nutrient fluxes.
RESULTS - GNMT knockout (KO) mice showed lower blood glucose that was accompanied by a reduction in liver glycogenolysis and gluconeogenesis. NAD was lower and the NAD(P)H-to-NAD(P) ratio was higher in livers of KO mice. Indices of NAD synthesis and catabolism, pentose phosphate pathway flux, and glutathione synthesis were dysregulated in KO mice.
CONCLUSION - Glucose precursor flux away from glucose formation towards pathways that regulate redox status increase in the liver. Moreover, synthesis and scavenging of NAD are both impaired resulting in reduced concentrations. This metabolic program blunts an increase in methyl donor availability, however, biosynthetic pathways underlying HCC are activated.
Copyright © 2019 The Authors. Published by Elsevier GmbH.. All rights reserved.
1 Communities
0 Members
0 Resources
17 MeSH Terms
Energy metabolism couples hepatocyte integrin-linked kinase to liver glucoregulation and postabsorptive responses of mice in an age-dependent manner.
Trefts E, Hughey CC, Lantier L, Lark DS, Boyd KL, Pozzi A, Zent R, Wasserman DH
(2019) Am J Physiol Endocrinol Metab 316: E1118-E1135
MeSH Terms: Age Factors, Animals, Blood Glucose, Cell Differentiation, Cell Respiration, Energy Metabolism, Gene Knockout Techniques, Glucose, Glucose Tolerance Test, Hepatocytes, Homeostasis, Inflammation, Insulin, Insulin Resistance, Liver, Liver Cirrhosis, Mice, Obesity, Protein-Serine-Threonine Kinases
Show Abstract · Added March 26, 2019
Integrin-linked kinase (ILK) is a critical intracellular signaling node for integrin receptors. Its role in liver development is complex, as ILK deletion at E10.5 (before hepatocyte differentiation) results in biochemical and morphological differences that resolve as mice age. Nevertheless, mice with ILK depleted specifically in hepatocytes are protected from the hepatic insulin resistance during obesity. Despite the potential importance of hepatocyte ILK to metabolic health, it is unknown how ILK controls hepatic metabolism or glucoregulation. The present study tested the role of ILK in hepatic metabolism and glucoregulation by deleting it specifically in hepatocytes, using a cre-lox system that begins expression at E15.5 (after initiation of hepatocyte differentiation). These mice develop the most severe morphological and glucoregulatory abnormalities at 6 wk, but these gradually resolve with age. After identifying when the deletion of ILK caused a severe metabolic phenotype, in depth studies were performed at this time point to define the metabolic programs that coordinate control of glucoregulation that are regulated by ILK. We show that 6-wk-old ILK-deficient mice have higher glucose tolerance and decreased net glycogen synthesis. Additionally, ILK was shown to be necessary for transcription of mitochondrial-related genes, oxidative metabolism, and maintenance of cellular energy status. Thus, ILK is required for maintaining hepatic transcriptional and metabolic programs that sustain oxidative metabolism, which are required for hepatic maintenance of glucose homeostasis.
1 Communities
1 Members
0 Resources
19 MeSH Terms
Response to Anti-PD-1 in Uveal Melanoma Without High-Volume Liver Metastasis.
Johnson DB, Bao R, Ancell KK, Daniels AB, Wallace D, Sosman JA, Luke JJ
(2019) J Natl Compr Canc Netw 17: 114-117
MeSH Terms: Antineoplastic Agents, Immunological, Computational Biology, Gene Expression Profiling, Humans, Liver Neoplasms, Melanoma, Molecular Targeted Therapy, Neoplasm Staging, Prognosis, Programmed Cell Death 1 Receptor, Treatment Outcome, Uveal Neoplasms
Show Abstract · Added March 30, 2020
Uveal melanoma (UM) is an uncommon melanoma subtype with poor prognosis. Agents that have transformed the management of cutaneous melanoma have made minimal inroads in UM. We conducted a single-arm phase II study of pembrolizumab in patients with metastatic UM and performed bioinformatics analyses of publicly available datasets to characterize the activity of anti-PD-1 in this setting and to understand the mutational and immunologic profile of this disease. A total of 5 patients received pembrolizumab in this study. Median overall survival was not reached, and median progression-free survival was 11.0 months. One patient experienced a complete response after one dose and 2 others experienced prolonged stable disease (20% response rate, 60% clinical benefit rate); 2 additional patients had rapidly progressing disease. Notably, the patients who benefited had either no liver metastases or small-volume disease, whereas patients with rapidly progressing disease had bulky liver involvement. We performed a bioinformatics analysis of The Cancer Genome Atlas for UM and confirmed a low mutation burden and low rates of T-cell inflammation. Note that the lack of T-cell inflammation strongly correlated with pathway overexpression. Anti-PD-1-based therapy may cause clinical benefit in metastatic UM, seemingly more often in patients without bulky liver metastases. Lack of mutation burden and T-cell infiltration and overexpression may be factors limiting therapeutic responses. NCT02359851.
Copyright © 2019 by the National Comprehensive Cancer Network.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Systemic bile acids induce insulin resistance in a TGR5-independent manner.
Syring KE, Cyphert TJ, Beck TC, Flynn CR, Mignemi NA, McGuinness OP
(2019) Am J Physiol Endocrinol Metab 316: E782-E793
MeSH Terms: Animals, Bile Acids and Salts, Cholagogues and Choleretics, Cholic Acids, Deoxycholic Acid, Gene Expression Profiling, Gluconeogenesis, Glucose Clamp Technique, Hep G2 Cells, Hepatocytes, Humans, Insulin Resistance, Liver, Mice, Mice, Knockout, Obesity, Primary Cell Culture, Receptors, G-Protein-Coupled, Taurocholic Acid
Show Abstract · Added April 15, 2019
Bile acids are involved in the emulsification and absorption of dietary fats, as well as acting as signaling molecules. Recently, bile acid signaling through farnesoid X receptor and G protein-coupled bile acid receptor (TGR5) has been reported to elicit changes in not only bile acid synthesis but also metabolic processes, including the alteration of gluconeogenic gene expression and energy expenditure. A role for bile acids in glucose metabolism is also supported by a correlation between changes in the metabolic state of patients (i.e., obesity or postbariatric surgery) and altered serum bile acid levels. However, despite evidence for a role for bile acids during metabolically challenging settings, the direct effect of elevated bile acids on insulin action in the absence of metabolic disease has yet to be investigated. The present study examines the impact of acutely elevated plasma bile acid levels on insulin sensitivity using hyperinsulinemic-euglycemic clamps. In wild-type mice, elevated bile acids impair hepatic insulin sensitivity by blunting the insulin suppression of hepatic glucose production. The impaired hepatic insulin sensitivity could not be attributed to TGR5 signaling, as TGR5 knockout mice exhibited a similar inhibition of insulin suppression of hepatic glucose production. Canonical insulin signaling pathways, such as hepatic PKB (or Akt) activation, were not perturbed in these animals. Interestingly, bile acid infusion directly into the portal vein did not result in an impairment in hepatic insulin sensitivity. Overall, the data indicate that acute increases in circulating bile acids in lean mice impair hepatic insulin sensitivity via an indirect mechanism.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Sex Hormone-Binding Globulin Levels in Young Men Are Associated With Nonalcoholic Fatty Liver Disease in Midlife.
Sarkar M, VanWagner LB, Terry JG, Carr JJ, Rinella M, Schreiner PJ, Lewis CE, Terrault N, Coronary Artery Risk Development in Young Adults (CARDIA) Cohort
(2019) Am J Gastroenterol 114: 758-763
MeSH Terms: Adult, Biomarkers, Humans, Intra-Abdominal Fat, Male, Middle Aged, Non-alcoholic Fatty Liver Disease, Prevalence, Prospective Studies, Radiography, Abdominal, Risk Factors, Sex Hormone-Binding Globulin, Testosterone, Tomography, X-Ray Computed, United States
Show Abstract · Added April 3, 2019
INTRODUCTION - Cross-sectional data note lower levels of testosterone and sex hormone-binding globulin (SHBG) levels in men with nonalcoholic fatty liver disease (NAFLD). Whether sex hormone levels in young men are predictive of later risk of NAFLD is not known.
METHODS - Among men in the prospective population-based multicenter Coronary Artery Risk Development in Young Adults study (mean age 50; n = 837), we assessed whether testosterone and SHBG levels measured at study year 10 (median age 35 years) were associated with prevalent NAFLD at study year 25. NAFLD was defined using noncontrast abdominal computed tomography (CT) scan after excluding other causes of hepatic steatosis. The association of testosterone and SHBG with prevalent NAFLD was assessed by logistic regression.
RESULTS - Total testosterone levels in young men were inversely associated with subsequent prevalent NAFLD on unadjusted analysis (odds ratio [OR] 0.64, 95% confidence interval 0.53-0.7, P < 0.001), although no longer significant after adjustment for year 10 metabolic covariates as well as change in metabolic covariates from years 10 to 25 (OR 0.99, 95% confidence interval 0.76-1.27). In contrast, there was a significant inverse association of SHBG with prevalent NAFLD, independent of testosterone and metabolic covariates (OR 0.68, OR 0.51-0.92, P = 0.013). On formal mediation testing, visceral adiposity was found to explain ∼41.0% (95% confidence interval 27%-73%) of the association of lower SHBG with prevalent NAFLD.
CONCLUSIONS - Lower levels of SHBG in young men are associated with increase in prevalent NAFLD in middle age, independent of comprehensive metabolic risk factors. SHBG may provide a novel marker of NAFLD risk in young men.
0 Communities
2 Members
0 Resources
15 MeSH Terms