, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 466

Publication Record

Connections

Therapeutically Active RIG-I Agonist Induces Immunogenic Tumor Cell Killing in Breast Cancers.
Elion DL, Jacobson ME, Hicks DJ, Rahman B, Sanchez V, Gonzales-Ericsson PI, Fedorova O, Pyle AM, Wilson JT, Cook RS
(2018) Cancer Res 78: 6183-6195
MeSH Terms: Animals, Apoptosis, Breast Neoplasms, Cell Line, Tumor, Cytokines, DEAD Box Protein 58, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, Immunity, Innate, Immunotherapy, Lymphocytes, Tumor-Infiltrating, MCF-7 Cells, Mice, Mice, Inbred BALB C, Mice, Nude, Nanoparticles, Neoplasm Metastasis, Neoplasms, Pyroptosis, Signal Transduction, Tumor Microenvironment
Show Abstract · Added April 15, 2019
Cancer immunotherapies that remove checkpoint restraints on adaptive immunity are gaining clinical momentum but have not achieved widespread success in breast cancers, a tumor type considered poorly immunogenic and which harbors a decreased presence of tumor-infiltrating lymphocytes. Approaches that activate innate immunity in breast cancer cells and the tumor microenvironment are of increasing interest, based on their ability to induce immunogenic tumor cell death, type I IFNs, and lymphocyte-recruiting chemokines. In agreement with reports in other cancers, we observe loss, downregulation, or mutation of the innate viral nucleotide sensor retinoic acid-inducible gene I (RIG-I/) in only 1% of clinical breast cancers, suggesting potentially widespread applicability for therapeutic RIG-I agonists that activate innate immunity. This was tested using an engineered RIG-I agonist in a breast cancer cell panel representing each of three major clinical breast cancer subtypes. Treatment with RIG-I agonist resulted in upregulation and mitochondrial localization of RIG-I and activation of proinflammatory transcription factors STAT1 and NF-κB. RIG-I agonist triggered the extrinsic apoptosis pathway and pyroptosis, a highly immunogenic form of cell death in breast cancer cells. RIG-I agonist also induced expression of lymphocyte-recruiting chemokines and type I IFN, confirming that cell death and cytokine modulation occur in a tumor cell-intrinsic manner. Importantly, RIG-I activation in breast tumors increased tumor lymphocytes and decreased tumor growth and metastasis. Overall, these findings demonstrate successful therapeutic delivery of a synthetic RIG-I agonist to induce tumor cell killing and to modulate the tumor microenvironment These findings describe the first in vivo delivery of RIG-I mimetics to tumors, demonstrating a potent immunogenic and therapeutic effect in the context of otherwise poorly immunogenic breast cancers. .
©2018 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Cerebrospinal Fluid Ceruloplasmin, Haptoglobin, and Vascular Endothelial Growth Factor Are Associated with Neurocognitive Impairment in Adults with HIV Infection.
Kallianpur AR, Gittleman H, Letendre S, Ellis R, Barnholtz-Sloan JS, Bush WS, Heaton R, Samuels DC, Franklin DR, Rosario-Cookson D, Clifford DB, Collier AC, Gelman B, Marra CM, McArthur JC, McCutchan JA, Morgello S, Grant I, Simpson D, Connor JR, Hulgan T, CHARTER Study Group
(2019) Mol Neurobiol 56: 3808-3818
MeSH Terms: Adult, Antiretroviral Therapy, Highly Active, Biomarkers, Ceruloplasmin, Comorbidity, Female, HIV Infections, Haptoglobins, Humans, Inflammation, Iron, Male, Multivariate Analysis, Neurocognitive Disorders, Regression Analysis, Vascular Endothelial Growth Factor A
Show Abstract · Added December 11, 2019
Dysregulated iron transport and a compromised blood-brain barrier are implicated in HIV-associated neurocognitive disorders (HAND). We quantified the levels of proteins involved in iron transport and/or angiogenesis-ceruloplasmin, haptoglobin, and vascular endothelial growth factor (VEGF)-as well as biomarkers of neuroinflammation, in cerebrospinal fluid (CSF) from 405 individuals with HIV infection and comprehensive neuropsychiatric assessments. Associations with HAND [defined by a Global Deficit Score (GDS) ≥ 0.5, GDS as a continuous measure (cGDS), or by Frascati criteria] were evaluated for the highest versus lowest tertile of each biomarker, adjusting for potential confounders. Higher CSF VEGF was associated with GDS-defined impairment [odds ratio (OR) 2.17, p = 0.006] and cGDS in unadjusted analyses and remained associated with GDS impairment after adjustment (p = 0.018). GDS impairment was also associated with higher CSF ceruloplasmin (p = 0.047) and with higher ceruloplasmin and haptoglobin in persons with minimal comorbidities (ORs 2.37 and 2.13, respectively; both p = 0.043). In persons with minimal comorbidities, higher ceruloplasmin and haptoglobin were associated with HAND by Frascati criteria (both p < 0.05), and higher ceruloplasmin predicted worse impairment (higher cGDS values, p < 0.01). In the subgroup with undetectable viral load and minimal comorbidity, CSF ceruloplasmin and haptoglobin were strongly associated with GDS impairment (ORs 5.57 and 2.96, respectively; both p < 0.01) and HAND (both p < 0.01). Concurrently measured CSF IL-6 and TNF-α were only weakly correlated to these three biomarkers. Higher CSF ceruloplasmin, haptoglobin, and VEGF are associated with a significantly greater likelihood of HAND, suggesting that interventions aimed at disordered iron transport and angiogenesis may be beneficial in this disorder.
0 Communities
1 Members
0 Resources
MeSH Terms
Efferocytosis in the tumor microenvironment.
Werfel TA, Cook RS
(2018) Semin Immunopathol 40: 545-554
MeSH Terms: Animals, Apoptosis, Biomarkers, Humans, Macrophages, Neoplasms, Phagocytes, Phagocytosis, Tumor Microenvironment
Show Abstract · Added April 15, 2019
Within the course of a single minute, millions of cells in the human body will undergo programmed cell death in response to physiological or pathological cues. The diminished energetic capacity of an apoptotic cell renders the cell incapable of sustaining plasma membrane integrity. Under these circumstances, intracellular contents that might leak into the surrounding tissue microenvironment, a process referred to as secondary necrosis, could induce inflammation and tissue damage. Remarkably, in most cases of physiologically rendered apoptotic cell death, inflammation is avoided because a mechanism to swiftly remove apoptotic cells from the tissue prior to their secondary necrosis becomes activated. This mechanism, referred to as efferocytosis, uses phagocytes to precisely identify and engulf neighboring apoptotic cells. In doing so, efferocytosis mantains tissue homeostasis that would otherwise be disrupted by normal cellular turnover and exacerbated further when the burden of apoptotic cells becomes elevated due to disease or insult. Efferocytosis also supports the resolution of inflammation, restoring tissue homesostasis. The importance of efferocytosis in health and disease underlies the increasing research efforts to understand the mechanisms by which efferocytosis occurs, and how a failure in the efferocytic machinery contributes to diseases, or conversely, how cancers effectively use the existing efferocytic machinery to generate a tumor-tolerant, immunosuppressive tumor microenvironment. We discuss herein the molecular mechanisms of efferocytosis, how the process of efferocytosis might support a tumor 'wound healing' phenotype, and efforts to target efferocytosis as an adjunct to existing tumor treatments.
0 Communities
1 Members
0 Resources
MeSH Terms
Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma.
Smith CC, Beckermann KE, Bortone DS, De Cubas AA, Bixby LM, Lee SJ, Panda A, Ganesan S, Bhanot G, Wallen EM, Milowsky MI, Kim WY, Rathmell WK, Swanstrom R, Parker JS, Serody JS, Selitsky SR, Vincent BG
(2018) J Clin Invest 128: 4804-4820
MeSH Terms: Carcinoma, Renal Cell, Endogenous Retroviruses, Humans, Immunotherapy, Kidney Neoplasms, Prognosis, Tumor Microenvironment
Show Abstract · Added October 30, 2019
Human endogenous retroviruses (hERVs) are remnants of exogenous retroviruses that have integrated into the genome throughout evolution. We developed a computational workflow, hervQuant, which identified more than 3,000 transcriptionally active hERVs within The Cancer Genome Atlas (TCGA) pan-cancer RNA-Seq database. hERV expression was associated with clinical prognosis in several tumor types, most significantly clear cell renal cell carcinoma (ccRCC). We explored two mechanisms by which hERV expression may influence the tumor immune microenvironment in ccRCC: (i) RIG-I-like signaling and (ii) retroviral antigen activation of adaptive immunity. We demonstrated the ability of hERV signatures associated with these immune mechanisms to predict patient survival in ccRCC, independent of clinical staging and molecular subtyping. We identified potential tumor-specific hERV epitopes with evidence of translational activity through the use of a ccRCC ribosome profiling (Ribo-Seq) dataset, validated their ability to bind HLA in vitro, and identified the presence of MHC tetramer-positive T cells against predicted epitopes. hERV sequences identified through this screening approach were significantly more highly expressed in ccRCC tumors responsive to treatment with programmed death receptor 1 (PD-1) inhibition. hervQuant provides insights into the role of hERVs within the tumor immune microenvironment, as well as evidence that hERV expression could serve as a biomarker for patient prognosis and response to immunotherapy.
0 Communities
1 Members
0 Resources
MeSH Terms
Identical and Nonidentical Twins: Risk and Factors Involved in Development of Islet Autoimmunity and Type 1 Diabetes.
Triolo TM, Fouts A, Pyle L, Yu L, Gottlieb PA, Steck AK, Type 1 Diabetes TrialNet Study Group
(2019) Diabetes Care 42: 192-199
MeSH Terms: Adolescent, Adult, Autoantibodies, Autoimmunity, Child, Child, Preschool, Diabetes Mellitus, Type 1, Disease Progression, Diseases in Twins, Environment, Female, Genetic Predisposition to Disease, Glutamate Decarboxylase, Humans, Insulin, Islets of Langerhans, Male, Mass Screening, Risk Factors, Seroepidemiologic Studies, Siblings, Twins, Twins, Dizygotic, Twins, Monozygotic, Young Adult
Show Abstract · Added August 15, 2018
OBJECTIVE - There are variable reports of risk of concordance for progression to islet autoantibodies and type 1 diabetes in identical twins after one twin is diagnosed. We examined development of positive autoantibodies and type 1 diabetes and the effects of genetic factors and common environment on autoantibody positivity in identical twins, nonidentical twins, and full siblings.
RESEARCH DESIGN AND METHODS - Subjects from the TrialNet Pathway to Prevention Study ( = 48,026) were screened from 2004 to 2015 for islet autoantibodies (GAD antibody [GADA], insulinoma-associated antigen 2 [IA-2A], and autoantibodies against insulin [IAA]). Of these subjects, 17,226 (157 identical twins, 283 nonidentical twins, and 16,786 full siblings) were followed for autoantibody positivity or type 1 diabetes for a median of 2.1 years.
RESULTS - At screening, identical twins were more likely to have positive GADA, IA-2A, and IAA than nonidentical twins or full siblings (all < 0.0001). Younger age, male sex, and genetic factors were significant factors for expression of IA-2A, IAA, one or more positive autoantibodies, and two or more positive autoantibodies (all ≤ 0.03). Initially autoantibody-positive identical twins had a 69% risk of diabetes by 3 years compared with 1.5% for initially autoantibody-negative identical twins. In nonidentical twins, type 1 diabetes risk by 3 years was 72% for initially multiple autoantibody-positive, 13% for single autoantibody-positive, and 0% for initially autoantibody-negative nonidentical twins. Full siblings had a 3-year type 1 diabetes risk of 47% for multiple autoantibody-positive, 12% for single autoantibody-positive, and 0.5% for initially autoantibody-negative subjects.
CONCLUSIONS - Risk of type 1 diabetes at 3 years is high for initially multiple and single autoantibody-positive identical twins and multiple autoantibody-positive nonidentical twins. Genetic predisposition, age, and male sex are significant risk factors for development of positive autoantibodies in twins.
© 2018 by the American Diabetes Association.
0 Communities
2 Members
0 Resources
25 MeSH Terms
MFe adipose tissue macrophages compensate for tissue iron perturbations in mice.
Hubler MJ, Erikson KM, Kennedy AJ, Hasty AH
(2018) Am J Physiol Cell Physiol 315: C319-C329
MeSH Terms: Adipocytes, Adipose Tissue, Animals, Cell Line, Dietary Supplements, Inflammation, Iron Overload, Iron, Dietary, Macrophages, Male, Mice, Mice, Inbred C57BL, Monocytes
Show Abstract · Added March 26, 2019
Resident adipose tissue macrophages (ATMs) play multiple roles to maintain tissue homeostasis, such as removing excess free fatty acids and regulation of the extracellular matrix. The phagocytic nature and oxidative resiliency of macrophages not only allows them to function as innate immune cells but also to respond to specific tissue needs, such as iron homeostasis. MFe ATMs are a subtype of resident ATMs that we recently identified to have twice the intracellular iron content as other ATMs and elevated expression of iron-handling genes. Although studies have demonstrated that iron homeostasis is important for adipocyte health, little is known about how MFe ATMs may respond to and influence adipose tissue iron availability. Two methodologies were used to address this question: dietary iron supplementation and intraperitoneal iron injection. Upon exposure to high dietary iron, MFe ATMs accumulated excess iron, whereas the iron content of MFe ATMs and adipocytes remained unchanged. In this model of chronic iron excess, MFe ATMs exhibited increased expression of genes involved in iron storage. In the injection model, MFe ATMs incorporated high levels of iron, and adipocytes were spared iron overload. This acute model of iron overload was associated with increased numbers of MFe ATMs; 17% could be attributed to monocyte recruitment and 83% to MFe ATM incorporation into the MFe pool. The MFe ATM population maintained its low inflammatory profile and iron-cycling expression profile. These studies expand the field's understanding of ATMs and confirm that they can respond as a tissue iron sink in models of iron overload.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Early TGF-β inhibition in mice reduces the incidence of breast cancer induced bone disease in a myeloid dependent manner.
Buenrostro D, Kwakwa KA, Putnam NE, Merkel AR, Johnson JR, Cassat JE, Sterling JA
(2018) Bone 113: 77-88
MeSH Terms: Animals, Bone Neoplasms, Female, Humans, Mammary Neoplasms, Experimental, Mice, Mice, Knockout, Myeloid Progenitor Cells, Transforming Growth Factor beta, Tumor Microenvironment
Show Abstract · Added April 15, 2019
The tumor-cell microenvironment is recognized as a dynamic place where critical cell interactions occur and play an important role in altering tumorigenesis. While many studies have investigated the effects of cellular cross-talk within distinct tumor microenvironments, these interactions have yet to be fully examined in bone. It is well-established that many common cancers metastasize to bone, resulting in the development of tumor-induced bone disease (TIBD), a multi-facetted illness that is driven by complex cell interactions within the bone marrow. Our group has previously published that myeloid progenitor cells expand in the presence of tumors in bone, aligning with the notion that myeloid cells can act as tumor promotors. Several groups, including ours, have established that transforming growth factor β (TGF-β), an abundant growth factor in bone, can regulate both TIBD and myeloid expansion. TGF-β inhibitors have been shown to increase bone volume, decrease bone destruction, and reduce but not eliminate tumor. Therefore, we hypothesize that inhibiting TGF-β will reduce myeloid expansion leading to a reduction of tumor burden in bone and osteoclast-mediated bone loss, causing to an overall reduction in TIBD. To address this hypothesis, two different mouse models of breast cancer bone colonization were pre-treated with the TGF-β neutralizing antibody, 1D11, prior to tumor inoculation (athymic: MDA-MB-231, BALB/c: 4T1) and continuously treated until sacrifice. Additionally, a genetically modified mouse model with a myeloid specific deletion of transforming growth factor beta receptor II (TGF-βRII) (TGF-βRII) was utilized in our studies. Systemic inhibition of TGF-β lead to fewer osteolytic lesions, and reduced tumor burden in bone as expected from previous studies. Additionally, early TGF-β inhibition affected expansion of distinct myeloid populations and shifted the cytokine profile of pro-tumorigenic factors in bone, 4T1 tumor cells, and bone-marrow derived macrophages. Similar observations were seen in tumor-bearing TGF-βRII mice, where these mice contained fewer bone lesions and significantly less tumor burden in bone, suggesting that TGF-β inhibition regulates myeloid expansion leading to a significant reduction in TIBD.
Published by Elsevier Inc.
0 Communities
2 Members
0 Resources
10 MeSH Terms
The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution.
Fidler AL, Boudko SP, Rokas A, Hudson BG
(2018) J Cell Sci 131:
MeSH Terms: Animals, Cellular Microenvironment, Collagen Type IV, Evolution, Molecular, Extracellular Matrix, Protein Conformation, alpha-Helical
Show Abstract · Added April 16, 2018
The cellular microenvironment, characterized by an extracellular matrix (ECM), played an essential role in the transition from unicellularity to multicellularity in animals (metazoans), and in the subsequent evolution of diverse animal tissues and organs. A major ECM component are members of the collagen superfamily -comprising 28 types in vertebrates - that exist in diverse supramolecular assemblies ranging from networks to fibrils. Each assembly is characterized by a hallmark feature, a protein structure called a triple helix. A current gap in knowledge is understanding the mechanisms of how the triple helix encodes and utilizes information in building scaffolds on the outside of cells. Type IV collagen, recently revealed as the evolutionarily most ancient member of the collagen superfamily, serves as an archetype for a fresh view of fundamental structural features of a triple helix that underlie the diversity of biological activities of collagens. In this Opinion, we argue that the triple helix is a protein structure of fundamental importance in building the extracellular matrix, which enabled animal multicellularity and tissue evolution.
© 2018. Published by The Company of Biologists Ltd.
0 Communities
1 Members
0 Resources
6 MeSH Terms
Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation.
Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, Kamińska B, Huelsken J, Omberg L, Gevaert O, Colaprico A, Czerwińska P, Mazurek S, Mishra L, Heyn H, Krasnitz A, Godwin AK, Lazar AJ, Cancer Genome Atlas Research Network, Stuart JM, Hoadley KA, Laird PW, Noushmehr H, Wiznerowicz M
(2018) Cell 173: 338-354.e15
MeSH Terms: Carcinogenesis, Cell Dedifferentiation, DNA Methylation, Databases, Genetic, Epigenesis, Genetic, Humans, Machine Learning, MicroRNAs, Neoplasm Metastasis, Neoplasms, Stem Cells, Transcriptome, Tumor Microenvironment
Show Abstract · Added October 30, 2019
Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics.
Ding L, Bailey MH, Porta-Pardo E, Thorsson V, Colaprico A, Bertrand D, Gibbs DL, Weerasinghe A, Huang KL, Tokheim C, Cortés-Ciriano I, Jayasinghe R, Chen F, Yu L, Sun S, Olsen C, Kim J, Taylor AM, Cherniack AD, Akbani R, Suphavilai C, Nagarajan N, Stuart JM, Mills GB, Wyczalkowski MA, Vincent BG, Hutter CM, Zenklusen JC, Hoadley KA, Wendl MC, Shmulevich L, Lazar AJ, Wheeler DA, Getz G, Cancer Genome Atlas Research Network
(2018) Cell 173: 305-320.e10
MeSH Terms: Carcinogenesis, DNA Repair, Databases, Genetic, Genes, Neoplasm, Genomics, Humans, Metabolic Networks and Pathways, Microsatellite Instability, Mutation, Neoplasms, Transcriptome, Tumor Microenvironment
Show Abstract · Added October 30, 2019
The Cancer Genome Atlas (TCGA) has catalyzed systematic characterization of diverse genomic alterations underlying human cancers. At this historic junction marking the completion of genomic characterization of over 11,000 tumors from 33 cancer types, we present our current understanding of the molecular processes governing oncogenesis. We illustrate our insights into cancer through synthesis of the findings of the TCGA PanCancer Atlas project on three facets of oncogenesis: (1) somatic driver mutations, germline pathogenic variants, and their interactions in the tumor; (2) the influence of the tumor genome and epigenome on transcriptome and proteome; and (3) the relationship between tumor and the microenvironment, including implications for drugs targeting driver events and immunotherapies. These results will anchor future characterization of rare and common tumor types, primary and relapsed tumors, and cancers across ancestry groups and will guide the deployment of clinical genomic sequencing.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms