Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 265

Publication Record

Connections

Bacterial DNA is present in the fetal intestine and overlaps with that in the placenta in mice.
Martinez KA, Romano-Keeler J, Zackular JP, Moore DJ, Brucker RM, Hooper C, Meng S, Brown N, Mallal S, Reese J, Aronoff DM, Shin H, Dominguez-Bello MG, Weitkamp JH
(2018) PLoS One 13: e0197439
MeSH Terms: Amniotic Fluid, Animals, DNA, Bacterial, Female, Intestinal Mucosa, Intestines, Mice, Placenta, Pregnancy, RNA, Ribosomal, 16S, Vagina
Show Abstract · Added May 18, 2018
Bacterial DNA has been reported in the placenta and amniotic fluid by several independent groups of investigators. However, it's taxonomic overlap with fetal and maternal bacterial DNA in different sites has been poorly characterized. Here, we determined the presence of bacterial DNA in the intestines and placentas of fetal mice at gestational day 17 (n = 13). These were compared to newborn intestines (n = 15), maternal sites (mouth, n = 6; vagina, n = 6; colon, n = 7; feces, n = 8), and negative controls to rule out contamination. The V4 region of the bacterial 16S rRNA gene indicated a pattern of bacterial DNA in fetal intestine similar to placenta but with higher phylogenetic diversity than placenta or newborn intestine. Firmicutes were the most frequently assignable phylum. SourceTracker analysis suggested the placenta as the most commonly identifiable origin for fetal bacterial DNA, but also over 75% of fetal gut genera overlapped with maternal oral and vaginal taxa but not with maternal or newborn feces. These data provide evidence for the presence of bacterial DNA in the mouse fetus.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Reovirus-Induced Apoptosis in the Intestine Limits Establishment of Enteric Infection.
Brown JJ, Short SP, Stencel-Baerenwald J, Urbanek K, Pruijssers AJ, McAllister N, Ikizler M, Taylor G, Aravamudhan P, Khomandiak S, Jabri B, Williams CS, Dermody TS
(2018) J Virol 92:
MeSH Terms: Animals, Antigens, Viral, Apoptosis, Cell Line, Cricetinae, Epithelial Cells, Intestinal Mucosa, Mammalian orthoreovirus 3, Mice, Orthoreovirus, Mammalian, Reoviridae Infections
Show Abstract · Added April 15, 2019
Several viruses induce intestinal epithelial cell death during enteric infection. However, it is unclear whether proapoptotic capacity promotes or inhibits replication in this tissue. We infected mice with two reovirus strains that infect the intestine but differ in the capacity to alter immunological tolerance to new food antigen. Infection with reovirus strain T1L, which induces an inflammatory immune response to fed antigen, is prolonged in the intestine, whereas T3D-RV, which does not induce this response, is rapidly cleared from the intestine. Compared with T1L, T3D-RV infection triggered apoptosis of intestinal epithelial cells and subsequent sloughing of dead cells into the intestinal lumen. We conclude that the infection advantage of T1L derives from its capacity to subvert host restriction by epithelial cell apoptosis, providing a possible mechanism by which T1L enhances inflammatory signals during antigen feeding. Using a panel of T1L × T3D-RV reassortant viruses, we identified the viral M1 and M2 gene segments as determinants of reovirus-induced apoptosis in the intestine. Expression of the T1L M1 and M2 genes in a T3D-RV background was sufficient to limit epithelial cell apoptosis and enhance viral infection to levels displayed by T1L. These findings define additional reovirus gene segments required for enteric infection of mice and illuminate the antiviral effect of intestinal epithelial cell apoptosis in limiting enteric viral infection. Viral strain-specific differences in the capacity to infect the intestine may be useful in identifying viruses capable of ameliorating tolerance to fed antigen in autoimmune conditions like celiac disease. Acute viral infections are thought to be cleared by the host with few lasting consequences. However, there may be much broader and long-lasting effects of viruses on immune homeostasis. Infection with reovirus, a common, nonpathogenic virus, triggers inflammation against innocuous food antigens, implicating this virus in the development of celiac disease, an autoimmune intestinal disorder triggered by exposure to dietary gluten. Using two reovirus strains that differ in the capacity to abrogate oral tolerance, we found that strain-specific differences in the capacity to replicate in the intestine inversely correlate with the capacity to induce apoptotic death of intestinal epithelial cells, providing a host-mediated process to restrict intestinal infection. This work contributes new knowledge about virus-host interactions in the intestine and establishes a foundation for future studies to define mechanisms by which viruses break oral tolerance in celiac disease.
Copyright © 2018 American Society for Microbiology.
0 Communities
1 Members
0 Resources
MeSH Terms
Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria.
Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL, Wu X, DeStefano Shields CE, Hechenbleikner EM, Huso DL, Anders RA, Giardiello FM, Wick EC, Wang H, Wu S, Pardoll DM, Housseau F, Sears CL
(2018) Science 359: 592-597
MeSH Terms: Adenomatous Polyposis Coli, Animals, Bacterial Toxins, Bacteroides fragilis, Biofilms, Carcinogenesis, Colon, Colonic Neoplasms, DNA Damage, Escherichia coli, Gastrointestinal Microbiome, Humans, Interleukin-17, Intestinal Mucosa, Metalloendopeptidases, Mice, Peptides, Polyketides, Precancerous Conditions
Show Abstract · Added March 20, 2018
Individuals with sporadic colorectal cancer (CRC) frequently harbor abnormalities in the composition of the gut microbiome; however, the microbiota associated with precancerous lesions in hereditary CRC remains largely unknown. We studied colonic mucosa of patients with familial adenomatous polyposis (FAP), who develop benign precursor lesions (polyps) early in life. We identified patchy bacterial biofilms composed predominately of and Genes for colibactin () and toxin (), encoding secreted oncotoxins, were highly enriched in FAP patients' colonic mucosa compared to healthy individuals. Tumor-prone mice cocolonized with (expressing colibactin), and enterotoxigenic showed increased interleukin-17 in the colon and DNA damage in colonic epithelium with faster tumor onset and greater mortality, compared to mice with either bacterial strain alone. These data suggest an unexpected link between early neoplasia of the colon and tumorigenic bacteria.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
19 MeSH Terms
The role of toxins in Clostridium difficile infection.
Chandrasekaran R, Lacy DB
(2017) FEMS Microbiol Rev 41: 723-750
MeSH Terms: Bacterial Toxins, Clostridium Infections, Clostridium difficile, Humans, Immunity, Intestinal Mucosa
Show Abstract · Added April 3, 2018
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Published by Oxford University Press on behalf of FEMS 2017.
0 Communities
1 Members
0 Resources
MeSH Terms
Shear stress induces noncanonical autophagy in intestinal epithelial monolayers.
Kim SW, Ehrman J, Ahn MR, Kondo J, Lopez AAM, Oh YS, Kim XH, Crawley SW, Goldenring JR, Tyska MJ, Rericha EC, Lau KS
(2017) Mol Biol Cell 28: 3043-3056
MeSH Terms: Actins, Autophagy, Caco-2 Cells, Cell Culture Techniques, Epithelium, Humans, Intestinal Mucosa, Intestines, Microvilli, Stress, Physiological, Vacuoles
Show Abstract · Added April 3, 2018
Flow of fluids through the gut, such as milk from a neonatal diet, generates a shear stress on the unilaminar epithelium lining the lumen. We report that exposure to physiological levels of fluid shear stress leads to the formation of large vacuoles, containing extracellular contents within polarizing intestinal epithelial cell monolayers. These observations lead to two questions: how can cells lacking primary cilia transduce shear stress, and what molecular pathways support the formation of vacuoles that can exceed 80% of the cell volume? We find that shear forces are sensed by actin-rich microvilli that eventually generate the apical brush border, providing evidence that these structures possess mechanosensing ability. Importantly, we identified the molecular pathway that regulates large vacuole formation downstream from mechanostimulation to involve central components of the autophagy pathway, including ATG5 and LC3, but not Beclin. Together our results establish a novel link between the actin-rich microvilli, the macroscopic transport of fluids across cells, and the noncanonical autophagy pathway in organized epithelial monolayers.
© 2017 Kim et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
0 Communities
3 Members
0 Resources
MeSH Terms
Human alpha defensin 5 is a candidate biomarker to delineate inflammatory bowel disease.
Williams AD, Korolkova OY, Sakwe AM, Geiger TM, James SD, Muldoon RL, Herline AJ, Goodwin JS, Izban MG, Washington MK, Smoot DT, Ballard BR, Gazouli M, M'Koma AE
(2017) PLoS One 12: e0179710
MeSH Terms: Biomarkers, Biopsy, Colitis, Ulcerative, Crohn Disease, Diagnosis, Differential, Gene Expression Profiling, Humans, Immunohistochemistry, Inflammatory Bowel Diseases, Intestinal Mucosa, Muramidase, Proctocolectomy, Restorative, Retrospective Studies, alpha-Defensins
Show Abstract · Added March 14, 2018
Inability to distinguish Crohn's colitis from ulcerative colitis leads to the diagnosis of indeterminate colitis. This greatly effects medical and surgical care of the patient because treatments for the two diseases vary. Approximately 30 percent of inflammatory bowel disease patients cannot be accurately diagnosed, increasing their risk of inappropriate treatment. We sought to determine whether transcriptomic patterns could be used to develop diagnostic biomarker(s) to delineate inflammatory bowel disease more accurately. Four patients groups were assessed via whole-transcriptome microarray, qPCR, Western blot, and immunohistochemistry for differential expression of Human α-Defensin-5. In addition, immunohistochemistry for Paneth cells and Lysozyme, a Paneth cell marker, was also performed. Aberrant expression of Human α-Defensin-5 levels using transcript, Western blot, and immunohistochemistry staining levels was significantly upregulated in Crohn's colitis, p< 0.0001. Among patients with indeterminate colitis, Human α-Defensin-5 is a reliable differentiator with a positive predictive value of 96 percent. We also observed abundant ectopic crypt Paneth cells in all colectomy tissue samples of Crohn's colitis patients. In a retrospective study, we show that Human α-Defensin-5 could be used in indeterminate colitis patients to determine if they have either ulcerative colitis (low levels of Human α-Defensin-5) or Crohn's colitis (high levels of Human α-Defensin-5). Twenty of 67 patients (30 percent) who underwent restorative proctocolectomy for definitive ulcerative colitis were clinically changed to de novo Crohn's disease. These patients were profiled by Human α-Defensin-5 immunohistochemistry. All patients tested strongly positive. In addition, we observed by both hematoxylin and eosin and Lysozyme staining, a large number of ectopic Paneth cells in the colonic crypt of Crohn's colitis patient samples. Our experiments are the first to show that Human α-Defensin-5 is a potential candidate biomarker to molecularly differentiate Crohn's colitis from ulcerative colitis, to our knowledge. These data give us both a potential diagnostic marker in Human α-Defensin-5 and insight to develop future mechanistic studies to better understand crypt biology in Crohn's colitis.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Loss of claudin-3 expression induces IL6/gp130/Stat3 signaling to promote colon cancer malignancy by hyperactivating Wnt/β-catenin signaling.
Ahmad R, Kumar B, Chen Z, Chen X, Müller D, Lele SM, Washington MK, Batra SK, Dhawan P, Singh AB
(2017) Oncogene 36: 6592-6604
MeSH Terms: Adenocarcinoma, Animals, Carcinogenesis, Cell Transformation, Neoplastic, Claudin-3, Colon, Colonic Neoplasms, Colorectal Neoplasms, Cytokine Receptor gp130, Epigenesis, Genetic, Epithelial-Mesenchymal Transition, Gene Expression Regulation, Neoplastic, Humans, Intestinal Mucosa, Mice, Mice, Knockout, Permeability, STAT3 Transcription Factor, Up-Regulation, Wnt Signaling Pathway, beta Catenin
Show Abstract · Added March 14, 2018
The hyperactivated Wnt/β-catenin signaling acts as a switch to induce epithelial to mesenchymal transition and promote colorectal cancer. However, due to its essential role in gut homeostasis, therapeutic targeting of this pathway has proven challenging. Additionally, IL-6/Stat-3 signaling, activated by microbial translocation through the dysregulated mucosal barrier in colon adenomas, facilitates the adenoma to adenocarcinomas transition. However, inter-dependence between these signaling pathways and key mucosal barrier components in regulating colon tumorigenesis and cancer progression remains unclear. In current study, we have discovered, using a comprehensive investigative regimen, a novel and tissue-specific role of claudin-3, a tight junction integral protein, in inhibiting colon cancer progression by serving as the common rheostat of Stat-3 and Wnt-signaling activation. Loss of claudin-3 also predicted poor patient survival. These findings however contrasted an upregulated claudin-3 expression in other cancer types and implicated role of the epigenetic regulation. Claudin-3-/- mice revealed dedifferentiated and leaky colonic epithelium, and developed invasive adenocarcinoma when subjected to colon cancer. Wnt-signaling hyperactivation, albeit in GSK-3β independent manner, differentiated colon cancer in claudin-3-/- mice versus WT-mice. Claudin-3 loss also upregulated the gp130/IL6/Stat3 signaling in colonic epithelium potentially assisted by infiltrating immune components. Genetic and pharmacological studies confirmed that claudin-3 loss induces Wnt/β-catenin activation, which is further exacerbated by Stat-3-activation and help promote colon cancer. Overall, these novel findings identify claudin-3 as a therapeutic target for inhibiting overactivation of Wnt-signaling to prevent CRC malignancy.
0 Communities
1 Members
0 Resources
21 MeSH Terms
A Chimeric Egfr Protein Reporter Mouse Reveals Egfr Localization and Trafficking In Vivo.
Yang YP, Ma H, Starchenko A, Huh WJ, Li W, Hickman FE, Zhang Q, Franklin JL, Mortlock DP, Fuhrmann S, Carter BD, Ihrie RA, Coffey RJ
(2017) Cell Rep 19: 1257-1267
MeSH Terms: Adult Stem Cells, Amphiregulin, Animals, Embryo, Mammalian, ErbB Receptors, Genes, Reporter, Green Fluorescent Proteins, Hepatocytes, Intestinal Mucosa, Mice, Microscopy, Fluorescence, Protein Transport, Recombinant Proteins, Transgenes
Show Abstract · Added June 21, 2017
EGF receptor (EGFR) is a critical signaling node throughout life. However, it has not been possible to directly visualize endogenous Egfr in mice. Using CRISPR/Cas9 genome editing, we appended a fluorescent reporter to the C terminus of the Egfr. Homozygous reporter mice appear normal and EGFR signaling is intact in vitro and in vivo. We detect distinct patterns of Egfr expression in progenitor and differentiated compartments in embryonic and adult mice. Systemic delivery of EGF or amphiregulin results in markedly different patterns of Egfr internalization and trafficking in hepatocytes. In the normal intestine, Egfr localizes to the crypt rather than villus compartment, expression is higher in adjacent epithelium than in intestinal tumors, and following colonic injury expression appears in distinct cell populations in the stroma. This reporter, under control of its endogenous regulatory elements, enables in vivo monitoring of the dynamics of Egfr localization and trafficking in normal and disease states.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
1 Communities
4 Members
2 Resources
14 MeSH Terms
Oleoylethanolamide: A fat ally in the fight against obesity.
Brown JD, Karimian Azari E, Ayala JE
(2017) Physiol Behav 176: 50-58
MeSH Terms: Animals, Anti-Obesity Agents, Eating, Endocannabinoids, Humans, Intestinal Mucosa, Intestines, Obesity, Oleic Acids, Reward
Show Abstract · Added October 23, 2017
Obesity is a pandemic, gateway disease that has thrived in modern, sedentary, high calorie-eating societies. Left unchecked, obesity and obesity-related diseases will continue to plague future generations with heavy burdens on economies, healthcare systems, and the quality of life of billions. There is a significant need to elucidate basic physiological mechanisms and therapies that address this global health care crisis. Oleoylethanolamide (OEA) is an endocannabinoid-like lipid that induces hypophagia and reduces fat mass in rodents. For over a decade, PPAR-α has been the most widely accepted mediator of the hypophagic action of OEA via signaling to homeostatic brain centers. Recent evidence suggests that OEA may also reduce food intake via effects on dopamine and endocannabinoid signaling within hedonic brain centers. Limited study of OEA supplementation in humans has provided some encouraging insight into OEA-based weight loss therapy, but more thorough, controlled investigations are needed. As a potential link between homeostatic and hedonic regulation of food intake, OEA is a prime starting point for the development of more effective obesity therapies.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Mucosal Expression of Type 2 and Type 17 Immune Response Genes Distinguishes Ulcerative Colitis From Colon-Only Crohn's Disease in Treatment-Naive Pediatric Patients.
Rosen MJ, Karns R, Vallance JE, Bezold R, Waddell A, Collins MH, Haberman Y, Minar P, Baldassano RN, Hyams JS, Baker SS, Kellermayer R, Noe JD, Griffiths AM, Rosh JR, Crandall WV, Heyman MB, Mack DR, Kappelman MD, Markowitz J, Moulton DE, Leleiko NS, Walters TD, Kugathasan S, Wilson KT, Hogan SP, Denson LA
(2017) Gastroenterology 152: 1345-1357.e7
MeSH Terms: Adolescent, Area Under Curve, Case-Control Studies, Child, Colitis, Ulcerative, Colon, Crohn Disease, Female, Gene Expression, Humans, Immunity, Mucosal, Interleukin-13, Interleukin-13 Receptor alpha2 Subunit, Interleukin-17, Interleukin-23, Interleukin-5, Interleukins, Intestinal Mucosa, Male, Predictive Value of Tests, Prognosis, Prospective Studies, RNA, Messenger, ROC Curve, Rectum, Transcriptome, Up-Regulation
Show Abstract · Added January 31, 2017
BACKGROUND & AIMS - There is controversy regarding the role of the type 2 immune response in the pathogenesis of ulcerative colitis (UC)-few data are available from treatment-naive patients. We investigated whether genes associated with a type 2 immune response in the intestinal mucosa are up-regulated in treatment-naive pediatric patients with UC compared with patients with Crohn's disease (CD)-associated colitis or without inflammatory bowel disease (IBD), and whether expression levels are associated with clinical outcomes.
METHODS - We used a real-time reverse-transcription quantitative polymerase chain reaction array to analyze messenger RNA (mRNA) expression patterns in rectal mucosal samples from 138 treatment-naive pediatric patients with IBD and macroscopic rectal disease, as well as those from 49 children without IBD (controls), enrolled in a multicenter prospective observational study from 2008 to 2012. Results were validated in real-time reverse-transcription quantitative polymerase chain reaction analyses of rectal RNA from an independent cohort of 34 pediatric patients with IBD and macroscopic rectal disease and 17 controls from Cincinnati Children's Hospital Medical Center.
RESULTS - We measured significant increases in mRNAs associated with a type 2 immune response (interleukin [IL]5 gene, IL13, and IL13RA2) and a type 17 immune response (IL17A and IL23) in mucosal samples from patients with UC compared with patients with colon-only CD. In a regression model, increased expression of IL5 and IL17A mRNAs distinguished patients with UC from patients with colon-only CD (P = .001; area under the receiver operating characteristic curve, 0.72). We identified a gene expression pattern in rectal tissues of patients with UC, characterized by detection of IL13 mRNA, that predicted clinical response to therapy after 6 months (odds ratio [OR], 6.469; 95% confidence interval [CI], 1.553-26.94), clinical response after 12 months (OR, 6.125; 95% CI, 1.330-28.22), and remission after 12 months (OR, 5.333; 95% CI, 1.132-25.12).
CONCLUSIONS - In an analysis of rectal tissues from treatment-naive pediatric patients with IBD, we observed activation of a type 2 immune response during the early course of UC. We were able to distinguish patients with UC from those with colon-only CD based on increased mucosal expression of genes that mediate type 2 and type 17 immune responses. Increased expression at diagnosis of genes that mediate a type 2 immune response is associated with response to therapy and remission in pediatric patients with UC.
Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
27 MeSH Terms