Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 121

Publication Record

Connections

Setd5 is essential for mammalian development and the co-transcriptional regulation of histone acetylation.
Osipovich AB, Gangula R, Vianna PG, Magnuson MA
(2016) Development 143: 4595-4607
MeSH Terms: Acetylation, Animals, Apoptosis, Carrier Proteins, Cell Cycle, Cell Differentiation, Cell Proliferation, Cells, Cultured, Chromatin, Embryonic Development, Embryonic Stem Cells, Gene Expression Regulation, Heart Defects, Congenital, Histones, Methyltransferases, Mice, Mice, Knockout, Myocytes, Cardiac, Neural Tube, Promoter Regions, Genetic, RNA, Untranslated, Transcription, Genetic
Show Abstract · Added November 30, 2016
SET domain-containing proteins play a vital role in regulating gene expression during development through modifications in chromatin structure. Here we show that SET domain-containing 5 (Setd5) is divergently transcribed with Gt(ROSA26)Sor, is necessary for mammalian development, and interacts with the PAF1 co-transcriptional complex and other proteins. Setd5-deficient mouse embryos exhibit severe defects in neural tube formation, somitogenesis and cardiac development, have aberrant vasculogenesis in embryos, yolk sacs and placentas, and die between embryonic day 10.5 and 11.5. Setd5-deficient embryonic stem cells have impaired cellular proliferation, increased apoptosis, defective cell cycle progression, a diminished ability to differentiate into cardiomyocytes and greatly perturbed gene expression. SETD5 co-immunoprecipitates with multiple components of the PAF1 and histone deacetylase-containing NCoR complexes and is not solely required for major histone lysine methylation marks. In the absence of Setd5, histone acetylation is increased at transcription start sites and near downstream regions. These findings suggest that SETD5 functions in a manner similar to yeast Set3p and Drosophila UpSET, and that it is essential for regulating histone acetylation during gene transcription.
© 2016. Published by The Company of Biologists Ltd.
2 Communities
2 Members
0 Resources
22 MeSH Terms
CREBBP Inactivation Promotes the Development of HDAC3-Dependent Lymphomas.
Jiang Y, Ortega-Molina A, Geng H, Ying HY, Hatzi K, Parsa S, McNally D, Wang L, Doane AS, Agirre X, Teater M, Meydan C, Li Z, Poloway D, Wang S, Ennishi D, Scott DW, Stengel KR, Kranz JE, Holson E, Sharma S, Young JW, Chu CS, Roeder RG, Shaknovich R, Hiebert SW, Gascoyne RD, Tam W, Elemento O, Wendel HG, Melnick AM
(2017) Cancer Discov 7: 38-53
MeSH Terms: Acetylation, Animals, CREB-Binding Protein, Cell Line, Tumor, Enhancer Elements, Genetic, Gene Knockout Techniques, Germinal Center, Histone Deacetylases, Histones, Humans, Lymphoma, Large B-Cell, Diffuse, Mice, Mutation, Neoplasm Transplantation, Nuclear Receptor Co-Repressor 2, Proto-Oncogene Proteins c-bcl-6, Transcription, Genetic
Show Abstract · Added April 6, 2017
Somatic mutations in CREBBP occur frequently in B-cell lymphoma. Here, we show that loss of CREBBP facilitates the development of germinal center (GC)-derived lymphomas in mice. In both human and murine lymphomas, CREBBP loss-of-function resulted in focal depletion of enhancer H3K27 acetylation and aberrant transcriptional silencing of genes that regulate B-cell signaling and immune responses, including class II MHC. Mechanistically, CREBBP-regulated enhancers are counter-regulated by the BCL6 transcriptional repressor in a complex with SMRT and HDAC3, which we found to bind extensively to MHC class II loci. HDAC3 loss-of-function rescued repression of these enhancers and corresponding genes, including MHC class II, and more profoundly suppressed CREBBP-mutant lymphomas in vitro and in vivo Hence, CREBBP loss-of-function contributes to lymphomagenesis by enabling unopposed suppression of enhancers by BCL6/SMRT/HDAC3 complexes, suggesting HDAC3-targeted therapy as a precision approach for CREBBP-mutant lymphomas.
SIGNIFICANCE - Our findings establish the tumor suppressor function of CREBBP in GC lymphomas in which CREBBP mutations disable acetylation and result in unopposed deacetylation by BCL6/SMRT/HDAC3 complexes at enhancers of B-cell signaling and immune response genes. Hence, inhibition of HDAC3 can restore the enhancer histone acetylation and may serve as a targeted therapy for CREBBP-mutant lymphomas. Cancer Discov; 7(1); 38-53. ©2016 AACR.See related commentary by Höpken, p. 14This article is highlighted in the In This Issue feature, p. 1.
©2016 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Imbalance between HDAC and HAT activities drives aberrant STAT1/MyD88 expression in macrophages from type 1 diabetic mice.
Filgueiras LR, Brandt SL, Ramalho TR, Jancar S, Serezani CH
(2017) J Diabetes Complications 31: 334-339
MeSH Terms: Acetylation, Animals, Bone Marrow Cells, Cells, Cultured, Diabetes Mellitus, Type 1, Enzyme Inhibitors, Epigenesis, Genetic, Gene Expression Regulation, Glucose, Histone Acetyltransferases, Histone Deacetylases, Histones, Macrophages, Macrophages, Peritoneal, Male, Mice, Inbred C57BL, Myeloid Differentiation Factor 88, Osmolar Concentration, Promoter Regions, Genetic, Protein Processing, Post-Translational, STAT1 Transcription Factor, Streptozocin
Show Abstract · Added May 4, 2017
AIMS - To investigate the hypothesis that alteration in histone acetylation/deacetylation triggers aberrant STAT1/MyD88 expression in macrophages from diabetics. Increased STAT1/MyD88 expression is correlated with sterile inflammation in type 1 diabetic (T1D) mice.
METHODS - To induce diabetes, we injected low-doses of streptozotocin in C57BL/6 mice. Peritoneal or bone marrow-differentiated macrophages were cultured in 5mM (low) or 25mM (high glucose). ChIP analysis of macrophages from nondiabetic or diabetic mice was performed to determine acetylation of lysine 9 in histone H3 in MyD88 and STAT1 promoter regions. Macrophages from diabetic mice were treated with the histone acetyltransferase inhibitor anacardic acid (AA), followed by determination of mRNA expression by qPCR.
RESULTS - Increased STAT1 and MyD88 expression in macrophages from diabetic but not naive mice cultured in low glucose persisted for up to 6days. Macrophages from diabetic mice exhibited increased activity of histone acetyltransferases (HAT) and decreased histone deacetylases (HDAC) activity. We detected increased H3K9Ac binding to Stat1/Myd88 promoters in macrophages from T1D mice and AA in vitro treatment reduced STAT1 and MyD88 mRNA expression.
CONCLUSIONS/INTERPRETATION - These results indicate that histone acetylation drives elevated Stat1/Myd88 expression in macrophages from diabetic mice, and this mechanism may be involved in sterile inflammation and diabetes comorbidities.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
22 MeSH Terms
The MYC-WDR5 Nexus and Cancer.
Thomas LR, Foshage AM, Weissmiller AM, Tansey WP
(2015) Cancer Res 75: 4012-5
MeSH Terms: Antineoplastic Agents, Basic Helix-Loop-Helix Leucine Zipper Transcription Factors, Chromatin Assembly and Disassembly, DNA, DNA Methylation, Drug Discovery, Epigenesis, Genetic, Gene Expression Regulation, Neoplastic, Genes, myc, Histone-Lysine N-Methyltransferase, Histones, Humans, Models, Genetic, Molecular Targeted Therapy, Neoplasm Proteins, Neoplasms, Protein Binding, Proto-Oncogene Proteins c-myc, Repressor Proteins, Signal Transduction
Show Abstract · Added March 26, 2019
The MYC oncogenes encode a family of transcription factors that feature prominently in cancer. MYC proteins are overexpressed or deregulated in a majority of malignancies and drive tumorigenesis by inducing widespread transcriptional reprogramming that promotes cell proliferation, metabolism, and genomic instability. The ability of MYC to regulate transcription depends on its dimerization with MAX, which creates a DNA-binding domain that recognizes specific sequences in the regulatory elements of MYC target genes. Recently, we discovered that recognition of target genes by MYC also depends on its interaction with WDR5, a WD40-repeat protein that exists as part of several chromatin-regulatory complexes. Here, we discuss how interaction of MYC with WDR5 could create an avidity-based chromatin recognition mechanism that allows MYC to select its target genes in response to both genetic and epigenetic determinants. We rationalize how the MYC-WDR5 interaction provides plasticity in target gene selection by MYC and speculate on the biochemical and genomic contexts in which this interaction occurs. Finally, we discuss how properties of the MYC-WDR5 interface make it an attractive point for discovery of small-molecule inhibitors of MYC function in cancer cells.
©2015 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
MeSH Terms
LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex.
Duvall-Noelle N, Karwandyar A, Richmond A, Raman D
(2016) Oncogene 35: 1122-33
MeSH Terms: Active Transport, Cell Nucleus, Adaptor Proteins, Signal Transducing, Breast Neoplasms, CCAAT-Enhancer-Binding Proteins, Cell Line, Tumor, Chemokine CXCL12, Cytoskeletal Proteins, DNA (Cytosine-5-)-Methyltransferase 1, DNA (Cytosine-5-)-Methyltransferases, Epigenesis, Genetic, Gene Knockdown Techniques, Heterocyclic Compounds, Histocompatibility Antigens, Histone-Lysine N-Methyltransferase, Histones, Humans, LIM Domain Proteins, Prognosis, Proteomics, Signal Transduction, Snail Family Transcription Factors, Transcription Factors, Tumor Microenvironment
Show Abstract · Added May 20, 2015
Nuclear LASP-1 (LIM and SH3 protein-1) has a direct correlation with overall survival of breast cancer patients. In this study, immunohistochemical analysis of a human breast TMA showed that LASP-1 is absent in normal human breast epithelium but the expression increases with malignancy and is highly nuclear in aggressive breast cancer. We investigated whether the chemokines and growth factors present in the tumor microenvironment could trigger nuclear translocation of LASP-1.Treatment of human breast cancer cells with CXCL12, EGF and HRG, and HMEC-CXCR2 cells with CXCL8 facilitated nuclear shuttling of LASP-1. Data from the biochemical analysis of the nuclear and cytosolic fractions further confirmed the nuclear translocation of LASP-1 upon chemokine and growth factor treatment. CXCL12-dependent nuclear import of LASP-1 could be blocked by CXCR4 antagonist, AMD-3100. Knock down of LASP-1 resulted in alterations in gene expression leading to an increased level of cell-junction and extracellular matrix proteins and an altered cytokine secretory profile. Three-dimensional cultures of human breast cancer cells on Matrigel revealed an altered colony growth, morphology and arborization pattern in LASP-1 knockdown cells. Functional analysis of the LASP-1 knockdown cells revealed increased adhesion to collagen IV and decreased invasion through the Matrigel. Proteomic analysis of immunoprecipitates of LASP-1 and subsequent validation approaches revealed that LASP-1 associated with the epigenetic machinery especially UHRF1, DNMT1, G9a and the transcription factor Snail1. Interestingly, LASP-1 associated with UHRF1, G9a, Snail1 and di- and tri-methylated histoneH3 in a CXCL12-dependent manner based on immunoprecipitation and proximity ligation assays. LASP-1 also directly bound to Snail1 which may stabilize Snail1. Thus, nuclear LASP-1 appears to functionally serve as a hub for the epigenetic machinery.
2 Communities
2 Members
0 Resources
23 MeSH Terms
Extrapolating histone marks across developmental stages, tissues, and species: an enhancer prediction case study.
Capra JA
(2015) BMC Genomics 16: 104
MeSH Terms: Acetylation, Animals, Cell Differentiation, Embryonic Development, Embryonic Stem Cells, Enhancer Elements, Genetic, Epigenomics, Gene Expression Regulation, Developmental, Heart, Histone Code, Histones, Humans, Machine Learning, Mice
Show Abstract · Added February 22, 2016
BACKGROUND - Dynamic activation and inactivation of gene regulatory DNA produce the expression changes that drive the differentiation of cellular lineages. Identifying regulatory regions active during developmental transitions is necessary to understand how the genome specifies complex developmental programs and how these processes are disrupted in disease. Gene regulatory dynamics are mediated by many factors, including the binding of transcription factors (TFs) and the methylation and acetylation of DNA and histones. Genome-wide maps of TF binding and DNA and histone modifications have been generated for many cellular contexts; however, given the diversity and complexity of animal development, these data cover only a small fraction of the cellular and developmental contexts of interest. Thus, there is a need for methods that use existing epigenetic and functional genomics data to analyze the thousands of contexts that remain uncharacterized.
RESULTS - To investigate the utility of histone modification data in the analysis of cellular contexts without such data, I evaluated how well genome-wide H3K27ac and H3K4me1 data collected in different developmental stages, tissues, and species were able to predict experimentally validated heart enhancers active at embryonic day 11.5 (E11.5) in mouse. Using a machine-learning approach to integrate the data from different contexts, I found that E11.5 heart enhancers can often be predicted accurately from data from other contexts, and I quantified the contribution of each data source to the predictions. The utility of each dataset correlated with nearness in developmental time and tissue to the target context: data from late developmental stages and adult heart tissues were most informative for predicting E11.5 enhancers, while marks from stem cells and early developmental stages were less informative. Predictions based on data collected in non-heart tissues and in human hearts were better than random, but worse than using data from mouse hearts.
CONCLUSIONS - The ability of these algorithms to accurately predict developmental enhancers based on data from related, but distinct, cellular contexts suggests that combining computational models with epigenetic data sampled from relevant contexts may be sufficient to enable functional characterization of many cellular contexts of interest.
1 Communities
2 Members
0 Resources
14 MeSH Terms
Age- and pregnancy-associated DNA methylation changes in mammary epithelial cells.
Huh SJ, Clement K, Jee D, Merlini A, Choudhury S, Maruyama R, Yoo R, Chytil A, Boyle P, Ran FA, Moses HL, Barcellos-Hoff MH, Jackson-Grusby L, Meissner A, Polyak K
(2015) Stem Cell Reports 4: 297-311
MeSH Terms: Age Factors, Animals, Antigens, Surface, Cell Differentiation, Cluster Analysis, DNA (Cytosine-5-)-Methyltransferase 1, DNA (Cytosine-5-)-Methyltransferases, DNA Methylation, Enhancer Elements, Genetic, Enzyme Activation, Epigenesis, Genetic, Epithelial Cells, Female, Gene Expression Profiling, Gene Expression Regulation, Histones, Immunophenotyping, Mammary Glands, Animal, Mice, Mice, Knockout, Organ Specificity, Phenotype, Pregnancy, Promoter Regions, Genetic, Sexual Maturation, Signal Transduction
Show Abstract · Added February 5, 2016
Postnatal mammary gland development and differentiation occur during puberty and pregnancy. To explore the role of DNA methylation in these processes, we determined the genome-wide DNA methylation and gene expression profiles of CD24(+)CD61(+)CD29(hi), CD24(+)CD61(+)CD29(lo), and CD24(+)CD61(-)CD29(lo) cell populations that were previously associated with distinct biological properties at different ages and reproductive stages. We found that pregnancy had the most significant effects on CD24(+)CD61(+)CD29(hi) and CD24(+)CD61(+)CD29(lo) cells, inducing distinct epigenetic states that were maintained through life. Integrated analysis of gene expression, DNA methylation, and histone modification profiles revealed cell-type- and reproductive-stage-specific changes. We identified p27 and TGFβ signaling as key regulators of CD24(+)CD61(+)CD29(lo) cell proliferation, based on their expression patterns and results from mammary gland explant cultures. Our results suggest that relatively minor changes in DNA methylation occur during luminal differentiation compared with the effects of pregnancy on CD24(+)CD61(+)CD29(hi) and CD24(+)CD61(+)CD29(lo) cells.
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
1 Communities
1 Members
0 Resources
26 MeSH Terms
Transcriptional corepressor MTG16 regulates small intestinal crypt proliferation and crypt regeneration after radiation-induced injury.
Poindexter SV, Reddy VK, Mittal MK, Williams AM, Washington MK, Harris E, Mah A, Hiebert SW, Singh K, Chaturvedi R, Wilson KT, Lund PK, Williams CS
(2015) Am J Physiol Gastrointest Liver Physiol 308: G562-71
MeSH Terms: Animals, Apoptosis, Cell Proliferation, Cell Survival, DNA Damage, Female, Gamma Rays, Gene Expression Regulation, Goblet Cells, Histones, Intestinal Mucosa, Intestine, Small, Male, Mice, Inbred C57BL, Mice, Knockout, Nuclear Proteins, Phenotype, Radiation Injuries, Experimental, Radiation Tolerance, Regeneration, Signal Transduction, Stem Cells, Tissue Culture Techniques, Transcription Factors, Wnt3A Protein
Show Abstract · Added January 20, 2015
Myeloid translocation genes (MTGs) are transcriptional corepressors implicated in development, malignancy, differentiation, and stem cell function. While MTG16 loss renders mice sensitive to chemical colitis, the role of MTG16 in the small intestine is unknown. Histological examination revealed that Mtg16(-/-) mice have increased enterocyte proliferation and goblet cell deficiency. After exposure to radiation, Mtg16(-/-) mice exhibited increased crypt viability and decreased apoptosis compared with wild-type (WT) mice. Flow cytometric and immunofluorescence analysis of intestinal epithelial cells for phospho-histone H2A.X also indicated decreased DNA damage and apoptosis in Mtg16(-/-) intestines. To determine if Mtg16 deletion affected epithelial cells in a cell-autonomous fashion, intestinal crypts were isolated from Mtg16(-/-) mice. Mtg16(-/-) and WT intestinal crypts showed similar enterosphere forming efficiencies when cultured in the presence of EGF, Noggin, and R-spondin. However, when Mtg16(-/-) crypts were cultured in the presence of Wnt3a, they demonstrated higher enterosphere forming efficiencies and delayed progression to mature enteroids. Mtg16(-/-) intestinal crypts isolated from irradiated mice exhibited increased survival compared with WT intestinal crypts. Interestingly, Mtg16 expression was reduced in a stem cell-enriched population at the time of crypt regeneration. This is consistent with MTG16 negatively regulating regeneration in vivo. Taken together, our data demonstrate that MTG16 loss promotes radioresistance and impacts intestinal stem cell function, possibly due to shifting cellular response away from DNA damage-induced apoptosis and towards DNA repair after injury.
1 Communities
5 Members
0 Resources
25 MeSH Terms
NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis.
Brown JD, Lin CY, Duan Q, Griffin G, Federation A, Paranal RM, Bair S, Newton G, Lichtman A, Kung A, Yang T, Wang H, Luscinskas FW, Croce K, Bradner JE, Plutzky J
(2014) Mol Cell 56: 219-231
MeSH Terms: Acetylation, Animals, Atherosclerosis, Azepines, Cell Adhesion, Cell Movement, Cells, Cultured, Chromatin, E-Selectin, Endothelial Cells, Endothelium, Vascular, Enhancer Elements, Genetic, Histones, Humans, Inflammation, Macrophages, Mice, Mice, Inbred C57BL, Mice, Knockout, NF-kappa B p50 Subunit, Nuclear Proteins, Protein Binding, RNA Polymerase II, Regulatory Sequences, Nucleic Acid, SOXF Transcription Factors, Signal Transduction, Transcription Factor RelA, Transcription Factors, Transcription Initiation, Genetic, Transcription, Genetic, Triazoles, Tumor Necrosis Factor-alpha, Vascular Cell Adhesion Molecule-1
Show Abstract · Added September 6, 2016
Proinflammatory stimuli elicit rapid transcriptional responses via transduced signals to master regulatory transcription factors. To explore the role of chromatin-dependent signal transduction in the atherogenic inflammatory response, we characterized the dynamics, structure, and function of regulatory elements in the activated endothelial cell epigenome. Stimulation with tumor necrosis factor alpha prompted a dramatic and rapid global redistribution of chromatin activators to massive de novo clustered enhancer domains. Inflammatory super enhancers formed by nuclear factor-kappa B accumulate at the expense of immediately decommissioned, basal endothelial super enhancers, despite persistent histone hyperacetylation. Mass action of enhancer factor redistribution causes momentous swings in transcriptional initiation and elongation. A chemical genetic approach reveals a requirement for BET bromodomains in communicating enhancer remodeling to RNA Polymerase II and orchestrating the transition to the inflammatory cell state, demonstrated in activated endothelium and macrophages. BET bromodomain inhibition abrogates super enhancer-mediated inflammatory transcription, atherogenic endothelial responses, and atherosclerosis in vivo.
0 Communities
1 Members
0 Resources
33 MeSH Terms
The ubiquitin-selective chaperone Cdc48/p97 associates with Ubx3 to modulate monoubiquitylation of histone H2B.
Bonizec M, Hérissant L, Pokrzywa W, Geng F, Wenzel S, Howard GC, Rodriguez P, Krause S, Tansey WP, Hoppe T, Dargemont C
(2014) Nucleic Acids Res 42: 10975-86
MeSH Terms: Adenosine Triphosphatases, Cell Cycle Proteins, Cell Line, Cells, Cultured, Female, Histones, Humans, Male, Molecular Chaperones, Mutation, Myoblasts, Saccharomyces cerevisiae Proteins, Transcription Factors, Transcription, Genetic, Ubiquitination, Valosin Containing Protein
Show Abstract · Added February 12, 2015
Cdc48/p97 is an evolutionary conserved ubiquitin-dependent chaperone involved in a broad array of cellular functions due to its ability to associate with multiple cofactors. Aside from its role in removing RNA polymerase II from chromatin after DNA damage, little is known about how this AAA-ATPase is involved in the transcriptional process. Here, we show that yeast Cdc48 is recruited to chromatin in a transcription-coupled manner and modulates gene expression. Cdc48, together with its cofactor Ubx3 controls monoubiquitylation of histone H2B, a conserved modification regulating nucleosome dynamics and chromatin organization. Mechanistically, Cdc48 facilitates the recruitment of Lge1, a cofactor of the H2B ubiquitin ligase Bre1. The function of Cdc48 in controlling H2B ubiquitylation appears conserved in human cells because disease-related mutations or chemical inhibition of p97 function affected the amount of ubiquitylated H2B in muscle cells. Together, these results suggest a prominent role of Cdc48/p97 in the coordination of chromatin remodeling with gene transcription to define cellular differentiation processes.
© The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
0 Communities
1 Members
0 Resources
16 MeSH Terms