Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 21

Publication Record

Connections

Lhx2 balances progenitor maintenance with neurogenic output and promotes competence state progression in the developing retina.
Gordon PJ, Yun S, Clark AM, Monuki ES, Murtaugh LC, Levine EM
(2013) J Neurosci 33: 12197-207
MeSH Terms: Animals, Cell Differentiation, Female, Gene Expression Regulation, Developmental, Gene Knock-In Techniques, LIM-Homeodomain Proteins, Male, Mice, Mice, Mutant Strains, Neural Stem Cells, Neurogenesis, Pregnancy, Retina, Retinal Ganglion Cells, Retinal Rod Photoreceptor Cells, Transcription Factors
Show Abstract · Added November 2, 2015
The LIM-Homeodomain transcription factor Lhx2 is an essential organizer of early eye development and is subsequently expressed in retinal progenitor cells (RPCs). To determine its requirement in RPCs, we performed a temporal series of conditional inactivations in mice with the early RPC driver Pax6 α-Cre and the tamoxifen-inducible Hes1(CreERT2) driver. Deletion of Lhx2 caused a significant reduction of the progenitor population and a corresponding increase in neurogenesis. Precursor fate choice correlated with the time of inactivation; early and late inactivation led to the overproduction of retinal ganglion cells (RGCs) and rod photoreceptors, respectively. In each case, however, the overproduction was selective, occurring at the expense of other cell types and indicating a role for Lhx2 in generating cell type diversity. RPCs that persisted in the absence of Lhx2 continued to generate RGC precursors beyond their normal production window, suggesting that Lhx2 facilitates a transition in competence state. These results identify Lhx2 as a key regulator of RPC properties that contribute to the ordered production of multiple cell types during retinal tissue formation.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Norepinephrine transporter variant A457P knock-in mice display key features of human postural orthostatic tachycardia syndrome.
Shirey-Rice JK, Klar R, Fentress HM, Redmon SN, Sabb TR, Krueger JJ, Wallace NM, Appalsamy M, Finney C, Lonce S, Diedrich A, Hahn MK
(2013) Dis Model Mech 6: 1001-11
MeSH Terms: Animals, Baroreflex, Behavior, Animal, Biological Transport, Catecholamines, Disease Models, Animal, Female, Gene Knock-In Techniques, Humans, Methoxyhydroxyphenylglycol, Mice, Mutant Proteins, Norepinephrine, Norepinephrine Plasma Membrane Transport Proteins, Postural Orthostatic Tachycardia Syndrome, Telemetry
Show Abstract · Added June 2, 2014
Postural orthostatic tachycardia syndrome (POTS) is a common autonomic disorder of largely unknown etiology that presents with sustained tachycardia on standing, syncope and elevated norepinephrine spillover. Some individuals with POTS experience anxiety, depression and cognitive dysfunction. Previously, we identified a mutation, A457P, in the norepinephrine (NE; also known as noradrenaline) transporter (NET; encoded by SLC6A2) in POTS patients. NET is expressed at presynaptic sites in NE neurons and plays a crucial role in regulating NE signaling and homeostasis through NE reuptake into noradrenergic nerve terminals. Our in vitro studies demonstrate that A457P reduces both NET surface trafficking and NE transport and exerts a dominant-negative impact on wild-type NET proteins. Here we report the generation and characterization of NET A457P mice, demonstrating the ability of A457P to drive the POTS phenotype and behaviors that are consistent with reported comorbidities. Mice carrying one A457P allele (NET(+/P)) exhibited reduced brain and sympathetic NE transport levels compared with wild-type (NET(+/+)) mice, whereas transport activity in mice carrying two A457P alleles (NET(P/P)) was nearly abolished. NET(+/P) and NET(P/P) mice exhibited elevations in plasma and urine NE levels, reduced 3,4-dihydroxyphenylglycol (DHPG), and reduced DHPG:NE ratios, consistent with a decrease in sympathetic nerve terminal NE reuptake. Radiotelemetry in unanesthetized mice revealed tachycardia in NET(+/P) mice without a change in blood pressure or baroreceptor sensitivity, consistent with studies of human NET A457P carriers. NET(+/P) mice also demonstrated behavioral changes consistent with CNS NET dysfunction. Our findings support that NET dysfunction is sufficient to produce a POTS phenotype and introduces the first genetic model suitable for more detailed mechanistic studies of the disorder and its comorbidities.
1 Communities
0 Members
0 Resources
16 MeSH Terms
Conditional and domain-specific inactivation of the Tsc2 gene in neural progenitor cells.
Fu C, Ess KC
(2013) Genesis 51: 284-92
MeSH Terms: Alleles, Animals, Brain, Exons, Founder Effect, Gene Deletion, Gene Knock-In Techniques, Homozygote, Mice, Mice, Transgenic, Neural Stem Cells, Protein Structure, Tertiary, TOR Serine-Threonine Kinases, Tuberous Sclerosis Complex 1 Protein, Tumor Suppressor Proteins
Show Abstract · Added December 2, 2013
Tuberous sclerosis complex (TSC) is a genetic disease characterized by multiorgan benign tumors as well as neurological manifestations. Epilepsy and autism are two of the more prevalent neurological complications and are usually severe. TSC is caused by mutations in either the TSC1 (encodes hamartin) or the TSC2 (encodes tuberin) genes with TSC2 mutations being associated with worse outcomes. Tuberin contains a highly conserved GTPase-activating protein (GAP) domain that indirectly inhibits mammalian target of rapamycin complex 1 (mTORC1). mTORC1 dysregulation is currently thought to cause much of the pathogenesis in TSC but mTORC1-independent mechanisms may also contribute. We generated a novel conditional allele of Tsc2 by flanking exons 36 and 37 with loxP sites. Mice homozygous for this knock-in Tsc2 allele are viable and fertile with normal appearing growth and development. Exposure to Cre recombinase then creates an in-frame deletion involving critical residues of the GAP domain. Homozygous conditional mutant mice generated using Emx1(Cre) have increased cortical mTORC1 signaling, severe developmental brain anomalies, seizures, and die within 3 weeks. We found that the normal levels of the mutant Tsc2 mRNA, though GAP-deficient tuberin protein, appear unstable and rapidly degraded. This novel animal model will allow further study of tuberin function including the requirement of the GAP domain for protein stability.
Copyright © 2013 Wiley Periodicals, Inc.
2 Communities
1 Members
0 Resources
15 MeSH Terms
Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration.
Pan FC, Bankaitis ED, Boyer D, Xu X, Van de Casteele M, Magnuson MA, Heimberg H, Wright CV
(2013) Development 140: 751-64
MeSH Terms: Acinar Cells, Animals, Body Weights and Measures, Cell Differentiation, Gene Knock-In Techniques, Mice, Microscopy, Confocal, Multipotent Stem Cells, Organogenesis, Pancreas, Recovery of Function, Signal Transduction, Tamoxifen, Time Factors, Transcription Factors
Show Abstract · Added January 10, 2014
Pancreatic multipotent progenitor cells (MPCs) produce acinar, endocrine and duct cells during organogenesis, but their existence and location in the mature organ remain contentious. We used inducible lineage-tracing from the MPC-instructive gene Ptf1a to define systematically in mice the switch of Ptf1a(+) MPCs to unipotent proacinar competence during the secondary transition, their rapid decline during organogenesis, and absence from the mature organ. Between E11.5 and E15.5, we describe tip epithelium heterogeneity, suggesting that putative Ptf1a(+)Sox9(+)Hnf1β(+) MPCs are intermingled with Ptf1a(HI)Sox9(LO) proacinar progenitors. In the adult, pancreatic duct ligation (PDL) caused facultative reactivation of multipotency factors (Sox9 and Hnf1β) in Ptf1a(+) acini, which undergo rapid reprogramming to duct cells and longer-term reprogramming to endocrine cells, including insulin(+) β-cells that are mature by the criteria of producing Pdx1(HI), Nkx6.1(+) and MafA(+). These Ptf1a lineage-derived endocrine/β-cells are likely formed via Ck19(+)/Hnf1β(+)/Sox9(+) ductal and Ngn3(+) endocrine progenitor intermediates. Acinar to endocrine/β-cell transdifferentiation was enhanced by combining PDL with pharmacological elimination of pre-existing β-cells. Thus, we show that acinar cells, without exogenously introduced factors, can regain aspects of embryonic multipotentiality under injury, and convert into mature β-cells.
3 Communities
2 Members
1 Resources
15 MeSH Terms
Inactivation of the dual Bmp/Wnt inhibitor Sostdc1 enhances pancreatic islet function.
Henley KD, Gooding KA, Economides AN, Gannon M
(2012) Am J Physiol Endocrinol Metab 303: E752-61
MeSH Terms: Animals, Bone Morphogenetic Proteins, Connective Tissue Growth Factor, Diet, High-Fat, Gene Expression Regulation, Gene Knock-In Techniques, Glucose Intolerance, Insulin, Insulin Secretion, Intercellular Signaling Peptides and Proteins, Islets of Langerhans, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Mutant Proteins, Signal Transduction, Tissue Culture Techniques, Wnt Proteins, Wnt Signaling Pathway
Show Abstract · Added January 6, 2014
Current endeavors in the type 2 diabetes (T2D) field include gaining a better understanding of extracellular signaling pathways that regulate pancreatic islet function. Recent data suggest that both Bmp and Wnt pathways are operative in pancreatic islets and play a positive role in insulin secretion and glucose homeostasis. Our laboratory found the dual Bmp and Wnt antagonist Sostdc1 to be upregulated in a mouse model of islet dysmorphogenesis and nonimmune-mediated lean diabetes. Because Bmp signaling has been proposed to enhance β-cell function, we evaluated the role of Sostdc1 in adult islet function using animals in which Sostdc1 was globally deleted. While Sostdc1-null animals exhibited no pancreas development phenotype, a subset of mutants exhibited enhanced insulin secretion and improved glucose homeostasis compared with control animals after 12-wk exposure to high-fat diet. Loss of Sostdc1 in the setting of metabolic stress results in altered expression of Bmp-responsive genes in islets but did not affect expression of Wnt target genes, suggesting that Sostdc1 primarily regulates the Bmp pathway in the murine pancreas. Furthermore, our data indicate that removal of Sostdc1 enhances the downregulation of the closely related Bmp inhibitors Ctgf and Gremlin in islets after 8-wk exposure to high-fat diet. These data imply that Sostdc1 regulates expression of these inhibitors and provide a means by which Sostdc1-null animals show enhanced insulin secretion and glucose homeostasis. Our studies provide insights into Bmp pathway regulation in the endocrine pancreas and reveal new avenues for improving β-cell function under metabolic stress.
3 Communities
2 Members
0 Resources
20 MeSH Terms
Transgenic elimination of high-affinity antidepressant and cocaine sensitivity in the presynaptic serotonin transporter.
Thompson BJ, Jessen T, Henry LK, Field JR, Gamble KL, Gresch PJ, Carneiro AM, Horton RE, Chisnell PJ, Belova Y, McMahon DG, Daws LC, Blakely RD
(2011) Proc Natl Acad Sci U S A 108: 3785-90
MeSH Terms: Animals, Antidepressive Agents, Behavior, Animal, Cocaine, Gene Knock-In Techniques, In Vitro Techniques, Kinetics, Mice, Mice, Transgenic, Presynaptic Terminals, Raphe Nuclei, Serotonin, Serotonin Plasma Membrane Transport Proteins, Serotonin Uptake Inhibitors, Synaptosomes
Show Abstract · Added July 10, 2013
Serotonin [i.e., 5-hydroxytryptamine (5-HT)]-targeted antidepressants are in wide use for the treatment of mood disorders, although many patients do not show a response or experience unpleasant side effects. Psychostimulants, such as cocaine and 3,4-methylenedioxymethamphetamine (i.e., "ecstasy"), also impact 5-HT signaling. To help dissect the contribution of 5-HT signaling to the actions of these and other agents, we developed transgenic mice in which high-affinity recognition of multiple antidepressants and cocaine is eliminated. Our animals possess a modified copy of the 5-HT transporter (i.e., SERT, slc6a4) that bears a single amino acid substitution, I172M, proximal to the 5-HT binding site. Although the M172 substitution does not impact the recognition of 5-HT, this mutation disrupts high-affinity binding of many competitive antagonists in transfected cells. Here, we demonstrate that, in M172 knock-in mice, basal SERT protein levels, 5-HT transport rates, and 5-HT levels are normal. However, SERT M172 mice display a substantial loss of sensitivity to the selective 5-HT reuptake inhibitors fluoxetine and citalopram, as well as to cocaine. Through a series of biochemical, electrophysiological, and behavioral assays, we demonstrate the unique properties of this model and establish directly that SERT is the sole protein responsible for selective 5-HT reuptake inhibitor-mediated alterations in 5-HT clearance, in 5-HT1A autoreceptor modulation of raphe neuron firing, and in behaviors used to predict the utility of antidepressants.
2 Communities
2 Members
0 Resources
15 MeSH Terms
Role of TAPP1 and TAPP2 adaptor binding to PtdIns(3,4)P2 in regulating insulin sensitivity defined by knock-in analysis.
Wullschleger S, Wasserman DH, Gray A, Sakamoto K, Alessi DR
(2011) Biochem J 434: 265-74
MeSH Terms: Animals, Binding Sites, Embryo, Mammalian, Female, Gene Knock-In Techniques, Insulin, Intracellular Signaling Peptides and Proteins, Male, Membrane Proteins, Mice, Mice, Inbred C57BL, Phosphatidylinositol 3-Kinases, Phosphatidylinositol Phosphates, Proto-Oncogene Proteins c-akt, Signal Transduction
Show Abstract · Added July 21, 2014
Insulin sensitivity is critically dependent on the activity of PI3K (phosphoinositide 3-kinase) and generation of the PtdIns(3,4,5)P(3) second messenger. PtdIns(3,4,5)P(3) can be broken down to PtdIns(3,4)P(2) through the action of the SHIPs (Src-homology-2-domain-containing inositol phosphatases). As PtdIns(3,4)P(2) levels peak after those of PtdIns(3,4,5)P(3), it has been proposed that PtdIns(3,4)P(2) controls a negative-feedback loop that down-regulates the insulin and PI3K network. Previously, we identified two related adaptor proteins termed TAPP [tandem PH (pleckstrin homology)-domain-containing protein] 1 and TAPP2 that specifically bind to PtdIns(3,4)P(2) through their C-terminal PH domain. To determine whether TAPP1 and TAPP2 play a role in regulating insulin sensitivity, we generated knock-in mice that express normal endogenous levels of mutant TAPP1 and TAPP2 that are incapable of binding PtdIns(3,4)P(2). These homozygous TAPP1(R211L/R211L) TAPP2(R218L/R218L) double knock-in mice are viable and exhibit significantly enhanced activation of Akt, a key downstream mediator of insulin signalling. Consistent with increased PI3K and Akt activity, the double knock-in mice display enhanced whole body insulin sensitivity and disposal of glucose uptake into muscle tissues. We also generated wild-type and double TAPP1(R211L/R211L) TAPP2(R218L/R218L) knock-in embryonic fibroblasts and found that insulin triggered enhanced production of PtdIns(3,4,5)P(3) and Akt activity in the double knock-in fibroblasts. These observations provide the first genetic evidence to support the notion that binding of TAPP1 and TAPP2 adap-tors to PtdIns(3,4)P(2) function as negative regulators of the insulin and PI3K signalling pathways.
© The Authors Journal compilation © 2011 Biochemical Society
1 Communities
0 Members
0 Resources
15 MeSH Terms
Mice with AS160/TBC1D4-Thr649Ala knockin mutation are glucose intolerant with reduced insulin sensitivity and altered GLUT4 trafficking.
Chen S, Wasserman DH, MacKintosh C, Sakamoto K
(2011) Cell Metab 13: 68-79
MeSH Terms: 14-3-3 Proteins, Adipocytes, Animals, Biological Transport, Blood Glucose, Cell Membrane, Female, GTPase-Activating Proteins, Gene Knock-In Techniques, Glucose, Glucose Tolerance Test, Glucose Transporter Type 4, In Vitro Techniques, Insulin, Male, Mice, Mice, Transgenic, Muscle, Skeletal, Mutation, Phosphorylation, Protein Binding, Protein Transport
Show Abstract · Added July 21, 2014
AS160 has emerged as a key player in insulin-mediated glucose transport through controlling GLUT4 trafficking, which is thought to be regulated by insulin-stimulated phosphorylation of sites including the 14-3-3 binding phospho-Thr649 (equivalent to Thr642 in human AS160). To define physiological roles of AS160-Thr649 phosphorylation and 14-3-3 binding in glucose homeostasis, we substituted this residue by a nonphosphorylatable alanine by knockin mutation in mice. The mutant protein was expressed at normal levels, while insulin-stimulated AS160 binding to 14-3-3s was abolished in homozygous knockin mice. These animals displayed impaired glucose disposal and insulin sensitivity, which were associated with decreased glucose uptake in vivo. Insulin-stimulated glucose transport and cell surface GLUT4 content were reduced in isolated muscles, but not in adipocytes. These results provide genetic evidence that insulin-induced AS160-Thr649 phosphorylation and/or its binding to 14-3-3 play an important role in regulating whole-body glucose homeostasis, at least in part through regulating GLUT4 trafficking in muscle.
Copyright © 2011 Elsevier Inc. All rights reserved.
1 Communities
0 Members
0 Resources
22 MeSH Terms
Two pathways for cyclooxygenase-2 protein degradation in vivo.
Wada M, Saunders TL, Morrow J, Milne GL, Walker KP, Dey SK, Brock TG, Opp MR, Aronoff DM, Smith WL
(2009) J Biol Chem 284: 30742-53
MeSH Terms: Animals, Cells, Cultured, Cyclooxygenase 2, Endoplasmic Reticulum, Fibroblasts, Gene Knock-In Techniques, Mice, Mice, Inbred C57BL, Mice, Transgenic
Show Abstract · Added March 26, 2014
COX-2, formally known as prostaglandin endoperoxide H synthase-2 (PGHS-2), catalyzes the committed step in prostaglandin biosynthesis. COX-2 is induced during inflammation and is overexpressed in colon cancer. In vitro, an 18-amino acid segment, residues 595-612, immediately upstream of the C-terminal endoplasmic reticulum targeting sequence is required for N-glycosylation of Asn(594), which permits COX-2 protein to enter the endoplasmic reticulum-associated protein degradation system. To determine the importance of this COX-2 degradation pathway in vivo, we engineered a del595-612 PGHS-2 (Delta 18 COX-2) knock-in mouse lacking this 18-amino acid segment. Delta 18 COX-2 knock-in mice do not exhibit the renal or reproductive abnormalities of COX-2 null mice. Delta 18 COX-2 mice do have elevated urinary prostaglandin E(2) metabolite levels and display a more pronounced and prolonged bacterial endotoxin-induced febrile response than wild type (WT) mice. Normal brain tissue, cultured resident peritoneal macrophages, and cultured skin fibroblasts from Delta 18 COX-2 mice overexpress Delta 18 COX-2 relative to WT COX-2 expression in control mice. These results indicate that COX-2 can be degraded via the endoplasmic reticulum-associated protein degradation pathway in vivo. Treatment of cultured cells from WT or Delta 18 COX-2 mice with flurbiprofen, which blocks substrate-dependent degradation, attenuates COX-2 degradation, and treatment of normal mice with ibuprofen increases the levels of COX-2 in brain tissue. Thus, substrate turnover-dependent COX-2 degradation appears to contribute to COX-2 degradation in vivo. Curiously, WT and Delta 18 COX-2 protein levels are similar in kidneys and spleens from WT and Delta 18 COX-2 mice. There must be compensatory mechanisms to maintain constant COX-2 levels in these tissues.
1 Communities
1 Members
0 Resources
9 MeSH Terms
alpha2A-adrenergic receptors heterosynaptically regulate glutamatergic transmission in the bed nucleus of the stria terminalis.
Shields AD, Wang Q, Winder DG
(2009) Neuroscience 163: 339-51
MeSH Terms: Adrenergic alpha-Agonists, Animals, Excitatory Postsynaptic Potentials, Gene Knock-In Techniques, Glutamic Acid, Guanfacine, Inhibitory Postsynaptic Potentials, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Neurons, Norepinephrine, Organ Culture Techniques, Patch-Clamp Techniques, Receptors, Adrenergic, alpha-2, Septal Nuclei, Stress, Psychological, Substance-Related Disorders, Synaptic Transmission, Time Factors
Show Abstract · Added May 19, 2014
Stress is a major driving force in reinstatement of drug-seeking behavior. The bed nucleus of the stria terminalis (BNST) has been identified as a key brain region in this behavior, and receives a dense input of the stress-neurotransmitter norepinephrine through the ventral noradrenergic bundle. Activation of alpha(2)-adrenergic receptors (alpha(2)-ARs) in the BNST blocks stress-induced reinstatement of drug-seeking, indicating a potentially important role for these receptors. Currently, it is unclear how alpha(2)-AR agonists elicit this behavioral action, or through which alpha(2)-AR subtype. Activation of alpha(2)-ARs decreases glutamatergic transmission in the BNST, an effect which is nearly absent in the alpha(2A)-AR knockout mouse. Here, we take advantage of a knock-in mouse in which a hemagglutinin-tagged alpha(2A)-AR was inserted into the endogenous locus, along with the alpha(2A)-AR selective agonist guanfacine, to further study the role of the alpha(2A)-AR subtype in modulation of neurotransmission in the BNST. Using immunohistochemistry, we find that alpha(2A)-ARs are highly expressed in the BNST, and that this expression is more similar in distribution to the vesicular glutamate transporters than to either norepinephrine transporter or tyrosine hydroxylase positive terminals. Using whole cell patch-clamp recordings, we show that guanfacine causes a depression of evoked excitatory and, to a more limited extent, inhibitory fast synaptic transmission. In total, these data support a prominent heterosynaptic role for alpha(2A)-ARs in modulating fast synaptic transmission in the BNST.
0 Communities
1 Members
0 Resources
21 MeSH Terms