Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 16 of 16

Publication Record

Connections

Estrogen treatment in vivo increases keratinocyte growth factor expression in the mammary gland.
Pedchenko VK, Imagawa W
(2000) J Endocrinol 165: 39-49
MeSH Terms: Age Factors, Animals, Dose-Response Relationship, Drug, Enzyme-Linked Immunosorbent Assay, Estradiol, Female, Fibroblast Growth Factor 10, Fibroblast Growth Factor 7, Fibroblast Growth Factors, Growth Substances, Mammary Glands, Animal, Mice, Mice, Inbred BALB C, Ovariectomy, RNA, Messenger, Time Factors, Up-Regulation
Show Abstract · Added August 27, 2013
Proliferation and differentiation of mammary epithelia are regulated by the combined action of systemic hormones and locally derived paracrine growth factors. Keratinocyte growth factor (KGF) is a potential candidate stromal factor that may participate in the hormonal control of stromal/epithelial interactions. In this study, we have examined the in vivo effect of 17beta-estradiol (E) treatment on KGF expression in mammary glands of peripubertal (5-week-old) and mature (11-week-old) mice. Mice received subcutaneous injections of hormone after which KGF mRNA levels were assayed by ribonuclease protection analysis of mammary gland RNA. E treatment caused a dose- and time-dependent increase in KGF mRNA levels in intact mice from both age groups. Neither 17alpha-estradiol nor progesterone injection affected KGF mRNA levels. Comparison of the relative expression of KGF in parenchyma-free fat pads and in intact glands demonstrated that the basal and E-dependent KGF mRNA levels did not require the presence of mammary epithelium. ELISA assay of KGF tissue content demonstrated that concomitantly with an up-regulation of mRNA, E treatment also increased KGF protein in mammary glands from peripubertal and mature mice. These data show that E treatment stimulates both KGF mRNA and protein expression in mammary stroma in vivo and raises the possibility that KGF has a role in E-regulated mammary gland development.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Species-specific detection of growth factor gene expression in developing murine prostatic tissue.
Haughney PC, Hayward SW, Dahiya R, Cunha GR
(1998) Biol Reprod 59: 93-9
MeSH Terms: Animals, Epidermal Growth Factor, Epithelium, ErbB Receptors, Fibroblast Growth Factor 10, Fibroblast Growth Factor 7, Fibroblast Growth Factors, Gene Expression, Growth Substances, Male, Mesoderm, Mice, Mice, Inbred BALB C, Mice, Nude, Polymerase Chain Reaction, Prostate, RNA, Messenger, Rats, Rats, Sprague-Dawley, Species Specificity, Transforming Growth Factor alpha, Transforming Growth Factor beta, Urogenital System
Show Abstract · Added December 10, 2013
The aim of the present study was to develop a method by which the expression of paracrine signaling molecules could be localized to either epithelial or stromal cells of developing prostatic tissue. Heterospecific tissue recombinants composed of mouse urogenital epithelium (mouse UGE) plus rat urogenital mesenchyme (rat UGM) and the reciprocal tissue recombinants, rat urogenital epithelium (rat UGE) plus mouse urogenital mesenchyme (mouse UGM), were grafted under the renal capsule in intact, athymic male mouse and rat hosts. After 2 wk of growth, RNA from the grafts was analyzed by species-specific reverse transcription-polymerase chain reaction for the expression of the mRNA for the following molecules: transforming growth factors beta1, beta3, and alpha; epidermal growth factor; epidermal growth factor receptor; and keratinocyte growth factor. The species of expression of these growth factor and receptor gene products within the heterospecific tissue recombinants was identified, allowing determination of the cell layer in which the genes were expressed. Identification of the tissue-specific expression of the growth factor and growth factor receptor profiles of the epithelium and mesenchyme of this in vivo model provides a basis for understanding the autocrine and paracrine mediators of cell-cell interactions in prostatic development.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Mammogenic hormones differentially modulate keratinocyte growth factor (KGF)-induced proliferation and KGF receptor expression in cultured mouse mammary gland epithelium.
Pedchenko VK, Imagawa WT
(1998) Endocrinology 139: 2519-26
MeSH Terms: Animals, Cell Division, Cells, Cultured, Epithelial Cells, Estradiol, Female, Fibroblast Growth Factor 10, Fibroblast Growth Factor 7, Fibroblast Growth Factors, Gene Expression, Growth Substances, Hormones, Kinetics, Mammary Glands, Animal, Mice, Mice, Inbred BALB C, Progesterone, Prolactin, RNA, Messenger, Receptor, Fibroblast Growth Factor, Type 2, Receptors, Fibroblast Growth Factor, Receptors, Growth Factor
Show Abstract · Added August 27, 2013
Stromally derived keratinocyte growth factor (KGF) can play an important role in mammary gland development as a mesenchymal/stromal mediator of epithelial growth and morphogenesis. However, the possible coordinate regulation of mammary gland development by mammogenic hormones and KGF is unexplored. In these studies, the direct effect of mammogenic hormones on KGF-mediated mammary epithelial mitogenesis and expression of the KGF receptor was examined using primary mouse mammary epithelium growing in serum-free, collagen gel cell culture. Addition of KGF produced an average 7-fold increase in cell number after 10 days of culture. This effect of KGF was further increased in the presence of PRL (9-fold) or progesterone (P; 15-fold), with the combination of P and PRL (22-fold) producing the strongest synergistic stimulation. Estrogen did not show any additional stimulation of growth either alone or in combination with PRL and/or P. Ribonuclease protection analysis showed that epithelial cells grown in medium supplemented with P, but not PRL or estrogen, exhibited a 10-fold higher steady state level of KGF receptor (KGFR) messenger RNA (mRNA). KGFR expression was not induced by short term P exposure, suggesting an effect on mRNA stability rather than transcriptional activation. Time-course studies showed that an early decrease in the level of KGFR mRNA in basal cultures was significantly reduced by P addition. Measurement of RNA turnover after actinomycin D treatment showed that P increased the t(1/2) of KGFR mRNA compared with basal medium. Thus, P and PRL may differentially potentiate the direct mitogenic effect of KGF: P partly by elevation of the level of KGFR mRNA, and PRL principally by intracellular pathways not affecting KGFR expression.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Growth factors in bladder wound healing.
Baskin LS, Sutherland RS, Thomson AA, Nguyen HT, Morgan DM, Hayward SW, Hom YK, DiSandro M, Cunha GR
(1997) J Urol 157: 2388-95
MeSH Terms: Animals, Epidermal Growth Factor, Female, Fibroblast Growth Factor 10, Fibroblast Growth Factor 7, Fibroblast Growth Factors, Growth Substances, Male, Mice, RNA, Messenger, Rats, Rats, Inbred F344, Rats, Sprague-Dawley, Receptor, Fibroblast Growth Factor, Type 2, Receptors, Fibroblast Growth Factor, Receptors, Growth Factor, Transforming Growth Factor alpha, Transforming Growth Factor beta, Urinary Bladder, Wound Healing
Show Abstract · Added December 10, 2013
INTRODUCTION - Surgical and traumatic injuries to the bladder initiate a complex series of biological processes that result in wound healing. This process involves cellular proliferation, migration and differentiation; removal of damaged tissue; and production of extracellular matrix all of which may be controlled by growth factors. In skin, keratinocyte growth factor (KGF) is induced following incisional injury. We hypothesize that in bladder wound healing KGF and other growth factors are induced to modulate tissue repair.
METHODS - We have created a model of surgical bladder injury in the rodent. At 12, 24 and 48 hrs and 5 and 7 days after injury, the bladder was bisected and total RNA extracted from the anterior or wounded half and posterior or non-wounded half. Histological analysis of the bladder wound was performed with Mason's Trichrome and immunohistochemistry against smooth muscle alpha actin. RNase protection assays were performed to examine the expression of KGF, transforming growth factor (TGF)alpha and TGF beta 2 and 3 as well as the receptors for KGF and epidermal growth factor (EGF). Lastly, the effects of the exogenous administration of KGF on the bladder was tested on neonatal mice by daily injections of 5 micrograms KGF per gram body weight for 5 days.
RESULTS - At 12 hours after injury KGF mRNA expression in the anterior wounded bladder half and posterior non-wounded bladder half was 8 and 6 times higher respectively, compared to unoperated control bladders. A similar response was seen for TGF alpha, where the 12 hour mRNA expression was 4.5 times higher in the anterior wounded bladder half and 3.5 times higher in the posterior non-wounded bladder half compared to unoperated control bladders. The nadir mRNA expression for both KGF and TGF alpha occurred at 7 days after bladder injury and was the same as in unoperated control bladders. EGFR mRNA expression was approximately 2 times higher in both the anterior wounded and posterior non-wounded bladder halves compared to the nadir levels which occurred at 24 hours after injury. TGF beta 2 and beta 3 mRNA levels did not significantly change in either the anterior wounded or posterior non-wounded bladder halves. Exogenous KGF stimulation resulted in a marked urothelial proliferation when compared to age matched control animals.
CONCLUSION - During the early phases of bladder wound healing (12-24 hours post injury), mRNA for KGF and TGF alpha increased, whereas TGF beta 2 and beta 3 and the KGFR and EGFR remain unchanged. Additionally, exogenous KGF has a direct effect on urothelial proliferation. KGF and TGF alpha warrant further study as potential mediators of bladder wound healing.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Growth factors and receptors in bladder development and obstruction.
Baskin LS, Sutherland RS, Thomson AA, Hayward SW, Cunha GR
(1996) Lab Invest 75: 157-66
MeSH Terms: Animals, Female, Fibroblast Growth Factor 10, Fibroblast Growth Factor 7, Fibroblast Growth Factors, Growth Substances, Male, RNA, Messenger, Rats, Rats, Inbred F344, Rats, Sprague-Dawley, Receptor, Fibroblast Growth Factor, Type 2, Receptors, Fibroblast Growth Factor, Receptors, Growth Factor, Receptors, Transforming Growth Factor beta, Transforming Growth Factor alpha, Transforming Growth Factor beta, Transforming Growth Factors, Urinary Bladder, Urinary Bladder Neck Obstruction
Show Abstract · Added December 10, 2013
During fetal and neonatal development and experimental obstruction, the bladder wall undergoes changes in both the amount and composition of the urothelium, extracellular matrix, and smooth muscle. We hypothesize that cell-cell signaling among the different layers of the bladder wall mediates these changes. Growth factors likely to be involved in this process are keratinocyte growth factor (KGF) and transforming growth factor (TGF)-alpha, -beta 2, and -beta 3. Whole rodent bladders were analyzed by RNase protection assays for KGF, KGF receptor, TGF alpha, epidermal growth factor receptor, and TGF beta 2 and -beta 3 transcripts at Fetal Day 14 (before smooth muscle differentiation) and Fetal Day 18 (after smooth muscle differentiation), at birth, and 60 days postnatal. Growth factor transcripts were also analyzed in partially obstructed rodent bladders and in sham-operated animals. TGF beta 2 and -beta 3 mRNA expression decreased as a function of gestational age, whereas TGF alpha mRNA increased. KGF mRNA was low before smooth muscle differentiation at 14 days' gestation, then increased. The mRNA of receptors for KGF and EGF remained essentially unchanged throughout bladder development. In bladders subjected to partial urethral outlet obstruction, there was a 2-fold increase in mRNA for TGF beta 2, a 5-fold increase in TGF beta 3, and a 10-fold increase TGF alpha mRNA. In contrast, there was no change in transcripts for either KGF or receptors for KGF and epidermal growth factor. Immunohistochemical localization of the protein for these growth factors showed selective localization to the epithelium and/or smooth muscle for TGF beta 2 and -beta 3, whereas TGF alpha and the epidermal growth factor receptor localized throughout the bladder wall. In conclusion, growth factor mRNA expression is modulated in bladder development and obstruction, which implies a possible mechanistic role of growth factors for the observed changes in the bladder wall and extracellular matrix.
0 Communities
1 Members
0 Resources
20 MeSH Terms
The effects of keratinocyte growth factor on healing of tympanic membrane perforations.
Clymer MA, Schwaber MK, Davidson JM
(1996) Laryngoscope 106: 280-5
MeSH Terms: Animals, Fibroblast Growth Factor 10, Fibroblast Growth Factor 7, Fibroblast Growth Factors, Growth Substances, Rats, Rats, Sprague-Dawley, Recombinant Proteins, Tympanic Membrane Perforation, Wound Healing
Show Abstract · Added December 10, 2013
Tympanic membrane (TM) perforations heal by reepithelialization and fibrous layer proliferation. The rat TM model may be used to study growth factors that promote epithelialization and fibroblast proliferation, such as epidermal growth factor (EGF) and fibroblast growth factor (FGF). The authors previously evaluated the effects of FGF on tympanic membrane perforations and showed an enhanced rate of wound healing with preservation of normal structure and function. The same model was used to test keratinocyte growth factor (KGF, also called FGF-7). This growth factor has been shown to stimulate the migration and proliferation of keratinocytes. This is the first study investigating KGF in the tympanic membrane perforation model. Our results show that in contrast to FGF and EGF, KGF does not enhance the rate of wound healing, but rather results in a more organized wound repair process.
0 Communities
1 Members
0 Resources
10 MeSH Terms