Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 123

Publication Record

Connections

Detection of Drug-Induced Acute Kidney Injury in Humans Using Urinary KIM-1, miR-21, -200c, and -423.
Pavkovic M, Robinson-Cohen C, Chua AS, Nicoara O, Cárdenas-González M, Bijol V, Ramachandran K, Hampson L, Pirmohamed M, Antoine DJ, Frendl G, Himmelfarb J, Waikar SS, Vaidya VS
(2016) Toxicol Sci 152: 205-13
MeSH Terms: Acetaminophen, Acute Kidney Injury, Adult, Biomarkers, Case-Control Studies, Cells, Cultured, Cisplatin, Cross-Sectional Studies, Dose-Response Relationship, Drug, Drug Overdose, Epithelial Cells, Female, Hepatitis A Virus Cellular Receptor 1, Humans, Kidney Tubules, Proximal, Longitudinal Studies, Male, MicroRNAs, Middle Aged, Predictive Value of Tests, Time Factors, Urinalysis, Young Adult
Show Abstract · Added September 19, 2017
Drug-induced acute kidney injury (AKI) is often encountered in hospitalized patients. Although serum creatinine (SCr) is still routinely used for assessing AKI, it is known to be insensitive and nonspecific. Therefore, our objective was to evaluate kidney injury molecule 1 (KIM-1) in conjunction with microRNA (miR)-21, -200c, and -423 as urinary biomarkers for drug-induced AKI in humans. In a cross-sectional cohort of patients (n = 135) with acetaminophen (APAP) overdose, all 4 biomarkers were significantly (P < .004) higher not only in APAP-overdosed (OD) patients with AKI (based on SCr increase) but also in APAP-OD patients without clinical diagnosis of AKI compared with healthy volunteers. In a longitudinal cohort of patients with malignant mesothelioma receiving intraoperative cisplatin (Cp) therapy (n = 108) the 4 biomarkers increased significantly (P < .0014) over time after Cp administration, but could not be used to distinguish patients with or without AKI. Evidence for human proximal tubular epithelial cells (HPTECs) being the source of miRNAs in urine was obtained first, by in situ hybridization based confirmation of increase in miR-21 expression in the kidney sections of AKI patients and second, by increased levels of miR-21, -200c, and -423 in the medium of cultured HPTECs treated with Cp and 4-aminophenol (APAP degradation product). Target prediction analysis revealed 1102 mRNA targets of miR-21, -200c, and -423 that are associated with pathways perturbed in diverse pathological kidney conditions. In summary, we report noninvasive detection of AKI in humans by combining the sensitivity of KIM-1 along with mechanistic potentials of miR-21, -200c, and -423.
© The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Bridging translation for acute kidney injury with better preclinical modeling of human disease.
Skrypnyk NI, Siskind LJ, Faubel S, de Caestecker MP
(2016) Am J Physiol Renal Physiol 310: F972-84
MeSH Terms: Acute Kidney Injury, Animals, Antineoplastic Agents, Cardiac Surgical Procedures, Cisplatin, Contrast Media, Disease Models, Animal, Humans, Sepsis, Translational Medical Research
Show Abstract · Added October 23, 2018
The current lack of effective therapeutics for patients with acute kidney injury (AKI) represents an important and unmet medical need. Given the importance of the clinical problem, it is time for us to take a few steps back and reexamine current practices. The focus of this review is to explore the extent to which failure of therapeutic translation from animal studies to human studies stems from deficiencies in the preclinical models of AKI. We will evaluate whether the preclinical models of AKI that are commonly used recapitulate the known pathophysiologies of AKI that are being modeled in humans, focusing on four common scenarios that are studied in clinical therapeutic intervention trials: cardiac surgery-induced AKI; contrast-induced AKI; cisplatin-induced AKI; and sepsis associated AKI. Based on our observations, we have identified a number of common limitations in current preclinical modeling of AKI that could be addressed. In the long term, we suggest that progress in developing better preclinical models of AKI will depend on developing a better understanding of human AKI. To this this end, we suggest that there is a need to develop greater in-depth molecular analyses of kidney biopsy tissues coupled with improved clinical and molecular classification of patients with AKI.
0 Communities
1 Members
0 Resources
MeSH Terms
In Vivo Autofluorescence Imaging of Tumor Heterogeneity in Response to Treatment.
Shah AT, Diggins KE, Walsh AJ, Irish JM, Skala MC
(2015) Neoplasia 17: 862-870
MeSH Terms: Antineoplastic Agents, Cell Line, Tumor, Cell Proliferation, Cetuximab, Cisplatin, Flavin-Adenine Dinucleotide, Humans, Microscopy, Fluorescence, Multiphoton, NADP, Neoplasms, Oxidation-Reduction, Single-Cell Analysis, Time Factors, Tumor Burden, Xenograft Model Antitumor Assays
Show Abstract · Added December 24, 2015
Subpopulations of cells that escape anti-cancer treatment can cause relapse in cancer patients. Therefore, measurements of cellular-level tumor heterogeneity could enable improved anti-cancer treatment regimens. Cancer exhibits altered cellular metabolism, which affects the autofluorescence of metabolic cofactors NAD(P)H and FAD. The optical redox ratio (fluorescence intensity of NAD(P)H divided by FAD) reflects global cellular metabolism. The fluorescence lifetime (amount of time a fluorophore is in the excited state) is sensitive to microenvironment, particularly protein-binding. High-resolution imaging of the optical redox ratio and fluorescence lifetimes of NAD(P)H and FAD (optical metabolic imaging) enables single-cell analyses. In this study, mice with FaDu tumors were treated with the antibody therapy cetuximab or the chemotherapy cisplatin and imaged in vivo two days after treatment. Results indicate that fluorescence lifetimes of NAD(P)H and FAD are sensitive to early response (two days post-treatment, P<.05), compared with decreases in tumor size (nine days post-treatment, P<.05). Frequency histogram analysis of individual optical metabolic imaging parameters identifies subpopulations of cells, and a new heterogeneity index enables quantitative comparisons of cellular heterogeneity across treatment groups for individual variables. Additionally, a dimensionality reduction technique (viSNE) enables holistic visualization of multivariate optical measures of cellular heterogeneity. These analyses indicate increased heterogeneity in the cetuximab and cisplatin treatment groups compared with the control group. Overall, the combination of optical metabolic imaging and cellular-level analyses provide novel, quantitative insights into tumor heterogeneity.
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
2 Communities
3 Members
0 Resources
15 MeSH Terms
Interstitial renal fibrosis due to multiple cisplatin treatments is ameliorated by semicarbazide-sensitive amine oxidase inhibition.
Katagiri D, Hamasaki Y, Doi K, Negishi K, Sugaya T, Nangaku M, Noiri E
(2016) Kidney Int 89: 374-85
MeSH Terms: Actins, Acute Kidney Injury, Allylamine, Amine Oxidase (Copper-Containing), Animals, Antineoplastic Agents, Benzamides, Chemokine CCL2, Cisplatin, Drug Evaluation, Preclinical, Fatty Acid-Binding Proteins, Fibrosis, Interleukin-6, Kidney, Male, Mice, Inbred C57BL, Mice, Transgenic, Transforming Growth Factor beta, Tumor Necrosis Factor-alpha, Vascular Endothelial Growth Factor A
Show Abstract · Added February 11, 2016
Elucidation of acute kidney diseases and disorders (AKD), including acute kidney injury (AKI), is important to prevent their progression to chronic kidney disease. Current animal AKI models are often too severe for use in evaluating human AKI. Therefore, new animal models of mild kidney injury are needed. Here a new clinically relevant animal model using multiple low doses of cisplatin (CP) was used to evaluate AKD. When 10 mg/kg CP was administered intraperitoneally once weekly for three times to L-type fatty acid-binding protein (L-FABP) transgenic mice, moderate renal interstitial fibrosis and tubule dilatation occurred, accompanied by brush-border loss. Urinary L-FABP, a promising biomarker of AKI, changed more drastically than blood urea nitrogen or creatinine. Preventing fibrosis in organs was also studied. Oral administration of a recently reported selective semicarbazide-sensitive amine oxidase inhibitor, PXS-4728A, for 1 week attenuated kidney injury and interstitial fibrosis compared with vehicle. Inhibition of renal lipid accumulation in semicarbazide-sensitive amine oxidase inhibitor-treated mice, together with reduced oxidative stress and L-FABP suppression in proximal tubules, suggested an antifibrotic effect of semicarbazide-sensitive amine oxidase inhibition in this CP-AKD model, a representative onco-nephrology. Thus, semicarbazide-sensitive amine oxidase inhibitors may be promising candidates for the prevention of chronic kidney disease in patients using CP to treat malignancy.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Small molecule inhibitor of the bone morphogenetic protein pathway DMH1 reduces ovarian cancer cell growth.
Hover LD, Young CD, Bhola NE, Wilson AJ, Khabele D, Hong CC, Moses HL, Owens P
(2015) Cancer Lett 368: 79-87
MeSH Terms: Antineoplastic Agents, Bone Morphogenetic Protein Receptors, Bone Morphogenetic Proteins, Cell Proliferation, Cisplatin, Disease-Free Survival, Drug Resistance, Neoplasm, Female, Gene Expression Regulation, Neoplastic, Humans, Ovarian Neoplasms, Pyrazoles, Quinolines, Signal Transduction, Spheroids, Cellular, Tumor Cells, Cultured
Show Abstract · Added August 4, 2015
The bone morphogenetic protein (BMP) pathway belonging to the Transforming Growth Factor beta (TGFβ) family of secreted cytokines/growth factors is an important regulator of cancer. BMP ligands have been shown to play both tumor suppressive and promoting roles in human cancers. We have found that BMP ligands are amplified in human ovarian cancers and that BMP receptor expression correlates with poor progression-free-survival (PFS). Furthermore, active BMP signaling has been observed in human ovarian cancer tissue. We also determined that ovarian cancer cell lines have active BMP signaling in a cell autonomous fashion. Inhibition of BMP signaling with a small molecule receptor kinase antagonist is effective at reducing ovarian tumor sphere growth. Furthermore, BMP inhibition can enhance sensitivity to Cisplatin treatment and regulates gene expression involved in platinum resistance in ovarian cancer. Overall, these studies suggest targeting the BMP pathway as a novel source to enhance chemo-sensitivity in ovarian cancer.
Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
2 Communities
4 Members
0 Resources
16 MeSH Terms
Thymoquinone enhances cisplatin-response through direct tumor effects in a syngeneic mouse model of ovarian cancer.
Wilson AJ, Saskowski J, Barham W, Yull F, Khabele D
(2015) J Ovarian Res 8: 46
MeSH Terms: Animals, Apoptosis, Benzoquinones, Caspase 3, Cell Line, Tumor, Cell Proliferation, Cell Survival, Cisplatin, Disease Models, Animal, Female, Gene Expression Regulation, Neoplastic, Humans, Mice, NF-kappa B, Ovarian Neoplasms, Tumor Necrosis Factor-alpha
Show Abstract · Added October 6, 2015
BACKGROUND - Ovarian cancer is the most lethal gynecologic malignancy characterized by the frequent development of resistance to platinum chemotherapy. Finding new drug combinations to overcome platinum resistance is a key clinical challenge. Thymoquinone (TQ) is a component of black seed oil that exerts multiple anti-tumorigenic effects on cells, including inhibition of NF-κB and promotion of DNA damage. We aimed to determine whether TQ enhances cisplatin cytotoxicity in cultured ovarian cancer cells and in an established murine syngeneic model of ovarian cancer.
METHODS - Ovarian cancer cell viability in vitro was measured by sulforhodamine B (SRB) assays, and drug interactions tested for synergism by isobologram analysis. ID8-NGL mouse ovarian cancer cells stably expressing an NF-κB reporter transgene were injected intra-peritoneally into C57BL/6 mice. After 30 day TQ and/or cisplatin treatment, we measured the following indices: tumor burden (ascites volume, number of peritoneal implants and mesenteric tumor mass); NF-κB reporter activity (luciferase assay); protein expression of the double-strand DNA break marker, pH2AX(ser139), the proliferation markers, Ki67/mib-1 and PCNA, and the apoptosis markers, cleaved caspase-3, cleaved PARP and Bax; and mRNA expression of NF-κB targets, TNF-α and IL-1β. Two-tailed Mann-Whitney tests were used for measuring differences between groups in mouse experiments.
RESULTS - In SRB assays, TQ and cisplatin synergized in ID8-NGL cells. In mice, cisplatin significantly reduced cell proliferation and increased apoptosis in tumors, resulting in decreased overall tumor burden. Combining TQ with cisplatin further decreased these indices, indicating co-operative effects between the drugs. TQ treatment promoted cisplatin-induced pH2AX expression in cultured cells and in tumors. While NF-κB inhibition by TQ induced anti-tumor effects in vitro, we made the unexpected observation that TQ alone increased both tumor NF-κB activity and formation of ascites in vivo.
CONCLUSIONS - TQ enhanced cisplatin-mediated cytoxicity in ovarian cancer cells in vitro and in a mouse syngeneic model, effects associated with increased DNA damage. However, our results strongly caution that TQ treatment alone may have an overall deleterious effect in the immunocompetent host through stimulation of ascites. Since TQ is a potential candidate for future clinical trials in ovarian cancer patients, this finding has considerable potential relevance to the clinic.
0 Communities
4 Members
0 Resources
16 MeSH Terms
A Synthetic Lethal Screen Identifies DNA Repair Pathways that Sensitize Cancer Cells to Combined ATR Inhibition and Cisplatin Treatments.
Mohni KN, Thompson PS, Luzwick JW, Glick GG, Pendleton CS, Lehmann BD, Pietenpol JA, Cortez D
(2015) PLoS One 10: e0125482
MeSH Terms: Antineoplastic Agents, Antineoplastic Combined Chemotherapy Protocols, Ataxia Telangiectasia Mutated Proteins, Cell Line, Tumor, Cell Survival, Cisplatin, DNA Repair, DNA-Directed DNA Polymerase, Drug Resistance, Neoplasm, Drug Synergism, Gene Library, HCT116 Cells, Humans, Intracellular Signaling Peptides and Proteins, Pyrazines, RNA, Small Interfering, Sulfones, Tumor Suppressor p53-Binding Protein 1
Show Abstract · Added February 4, 2016
The DNA damage response kinase ATR may be a useful cancer therapeutic target. ATR inhibition synergizes with loss of ERCC1, ATM, XRCC1 and DNA damaging chemotherapy agents. Clinical trials have begun using ATR inhibitors in combination with cisplatin. Here we report the first synthetic lethality screen with a combination treatment of an ATR inhibitor (ATRi) and cisplatin. Combination treatment with ATRi/cisplatin is synthetically lethal with loss of the TLS polymerase ζ and 53BP1. Other DNA repair pathways including homologous recombination and mismatch repair do not exhibit synthetic lethal interactions with ATRi/cisplatin, even though loss of some of these repair pathways sensitizes cells to cisplatin as a single-agent. We also report that ATRi strongly synergizes with PARP inhibition, even in homologous recombination-proficient backgrounds. Lastly, ATR inhibitors were able to resensitize cisplatin-resistant cell lines to cisplatin. These data provide a comprehensive analysis of DNA repair pathways that exhibit synthetic lethality with ATR inhibitors when combined with cisplatin chemotherapy, and will help guide patient selection strategies as ATR inhibitors progress into the cancer clinic.
1 Communities
2 Members
0 Resources
18 MeSH Terms
Pharmacologically Increasing Mdm2 Inhibits DNA Repair and Cooperates with Genotoxic Agents to Kill p53-Inactivated Ovarian Cancer Cells.
Carrillo AM, Hicks M, Khabele D, Eischen CM
(2015) Mol Cancer Res 13: 1197-205
MeSH Terms: Animals, Antineoplastic Combined Chemotherapy Protocols, Apoptosis, Cell Line, Tumor, Cell Proliferation, Cisplatin, Comet Assay, DNA Breaks, Double-Stranded, DNA Damage, DNA Repair, Etoposide, Female, Fibroblasts, HEK293 Cells, Humans, Imidazoles, Mice, Mice, Transgenic, Mutagens, Ovarian Neoplasms, Piperazines, Proto-Oncogene Proteins c-mdm2, Tumor Suppressor Protein p53
Show Abstract · Added February 22, 2016
UNLABELLED - The Mdm2 oncogene is a negative regulator of the p53 tumor suppressor and recently identified inhibitor of DNA break repair. Nutlin-3 is a small-molecule inhibitor of Mdm2-p53 interaction that can induce apoptosis in cancer cells through activation of p53. Although this is a promising therapy for those cancers with wild-type p53, half of all human cancers have inactivated p53. Here, we reveal that a previously unappreciated effect of Nutlin is inhibition of DNA break repair, stemming from its ability to increase Mdm2 protein levels. The Nutlin-induced increase in Mdm2 inhibited DNA double-strand break repair and prolonged DNA damage response signaling independent of p53. Mechanistically, this effect of Nutlin required Mdm2 and acted through Nbs1 of the Mre11-Rad50-Nbs1 DNA repair complex. In ovarian cancer cells, where >90% have inactivated p53, Nutlin combined with the genotoxic agents, cisplatin or etoposide, had a cooperative lethal effect resulting in increased DNA damage and apoptosis. Therefore, these data demonstrate an unexpected consequence of pharmacologically increasing Mdm2 levels that when used in combination with genotoxic agents induces synthetic lethality in ovarian cancer cells, and likely other malignant cell types, that have inactivated p53.
IMPLICATIONS - Data reveal a therapeutically beneficial effect of pharmacologically increasing Mdm2 levels combined with chemotherapeutic agents for malignancies that have lost functional p53.
©2015 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Phosphorescence monitoring of hypoxic microenvironment in solid-tumors to evaluate chemotherapeutic effects using the hypoxia-sensitive iridium (III) coordination compound.
Zeng Y, Liu Y, Shang J, Ma J, Wang R, Deng L, Guo Y, Zhong F, Bai M, Zhang S, Wu D
(2015) PLoS One 10: e0121293
MeSH Terms: Adenocarcinoma, Animals, Antineoplastic Agents, Biological Transport, Cell Hypoxia, Cell Line, Tumor, Cell Survival, Cisplatin, Colonic Neoplasms, Coordination Complexes, Iridium, Luminescent Agents, Luminescent Measurements, Mice, Optical Imaging, Organometallic Compounds, Treatment Outcome, Tumor Microenvironment
Show Abstract · Added April 2, 2019
OBJECTIVES - To utilize phosphorescence to monitor hypoxic microenvironment in solid-tumors and investigate cancer chemotherapeutic effects in vivo.
METHODS - A hypoxia-sensitive probe named BTP was used to monitor hypoxic microenvironment in solid-tumors. The low-dose metronomic treatment with cisplatin was used in anti-angiogenetic chemotherapeutic programs. The phosphorescence properties of BTP were detected by a spectrofluorometer. BTP cytotoxicity utilized cell necrosis and apoptosis, which were evaluated by trypan blue dye exclusion and Hoechst33342 plus propidium iodide assays. Tumor-bearing mouse models of colon adenocarcinoma were used for tumor imaging in vivo. Monitoring of the hypoxic microenvironment in tumors was performed with a Maestro 2 fluorescence imaging system. Tumor tissues in each group were harvested regularly and treated with pathological hematoxylin and eosin and immunohistochemical staining to confirm imaging results.
RESULTS - BTP did not feature obvious cytotoxicity for cells, and tumor growth in low-dose metronomic cisplatin treated mice was significantly inhibited by chemotherapy. Hypoxic levels significantly increased due to cisplatin, as proven by the expression level of related proteins. Phosphorescence intensity in the tumors of mice in the cisplatin group was stronger and showed higher contrast than that in tumors of saline treated mice.
CONCLUSIONS - We develop a useful phosphorescence method to evaluate the chemotherapeutic effects of cisplatin. The proposed method shows potential as a phosphorescence imaging approach for evaluating chemotherapeutic effects in vivo, especially anti-angiogenesis.
0 Communities
1 Members
0 Resources
MeSH Terms
KIM-1-mediated phagocytosis reduces acute injury to the kidney.
Yang L, Brooks CR, Xiao S, Sabbisetti V, Yeung MY, Hsiao LL, Ichimura T, Kuchroo V, Bonventre JV
(2015) J Clin Invest 125: 1620-36
MeSH Terms: Acute Kidney Injury, Animals, Apoptosis, Cisplatin, Cytokines, Epithelial Cells, Extracellular Matrix Proteins, Gene Expression Regulation, Hepatitis A Virus Cellular Receptor 1, Homeodomain Proteins, Immunity, Innate, Inflammation, Intercellular Signaling Peptides and Proteins, Kidney, Kidney Tubules, Proximal, LLC-PK1 Cells, Macrophage Activation, Male, Membrane Proteins, Mice, Mice, Inbred C57BL, Mice, Knockout, NF-kappa B, Phagocytosis, Phosphatidylinositol 3-Kinases, Protein Structure, Tertiary, Radiation Chimera, Reperfusion Injury, Swine
Show Abstract · Added September 12, 2016
Kidney injury molecule 1 (KIM-1, also known as TIM-1) is markedly upregulated in the proximal tubule after injury and is maladaptive when chronically expressed. Here, we determined that early in the injury process, however, KIM-1 expression is antiinflammatory due to its mediation of phagocytic processes in tubule cells. Using various models of acute kidney injury (AKI) and mice expressing mutant forms of KIM-1, we demonstrated a mucin domain-dependent protective effect of epithelial KIM-1 expression that involves downregulation of innate immunity. Deletion of the mucin domain markedly impaired KIM-1-mediated phagocytic function, resulting in increased proinflammatory cytokine production, decreased antiinflammatory growth factor secretion by proximal epithelial cells, and a subsequent increase in tissue macrophages. Mice expressing KIM-1Δmucin had greater functional impairment, inflammatory responses, and mortality in response to ischemia- and cisplatin-induced AKI. Compared with primary renal proximal tubule cells isolated from KIM-1Δmucin mice, those from WT mice had reduced proinflammatory cytokine secretion and impaired macrophage activation. The antiinflammatory effect of KIM-1 expression was due to the interaction of KIM-1 with p85 and subsequent PI3K-dependent downmodulation of NF-κB. Hence, KIM-1-mediated epithelial cell phagocytosis of apoptotic cells protects the kidney after acute injury by downregulating innate immunity and inflammation.
1 Communities
1 Members
0 Resources
29 MeSH Terms