Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 100

Publication Record

Connections

3D Printing of Tissue Engineered Constructs for In Vitro Modeling of Disease Progression and Drug Screening.
Vanderburgh J, Sterling JA, Guelcher SA
(2017) Ann Biomed Eng 45: 164-179
MeSH Terms: Animals, Cell Culture Techniques, Drug Evaluation, Preclinical, Humans, Models, Biological, Printing, Three-Dimensional, Tissue Engineering
Show Abstract · Added April 26, 2017
2D cell culture and preclinical animal models have traditionally been implemented for investigating the underlying cellular mechanisms of human disease progression. However, the increasing significance of 3D vs. 2D cell culture has initiated a new era in cell culture research in which 3D in vitro models are emerging as a bridge between traditional 2D cell culture and in vivo animal models. Additive manufacturing (AM, also known as 3D printing), defined as the layer-by-layer fabrication of parts directed by digital information from a 3D computer-aided design file, offers the advantages of simultaneous rapid prototyping and biofunctionalization as well as the precise placement of cells and extracellular matrix with high resolution. In this review, we highlight recent advances in 3D printing of tissue engineered constructs that recapitulate the physical and cellular properties of the tissue microenvironment for investigating mechanisms of disease progression and for screening drugs.
0 Communities
2 Members
0 Resources
7 MeSH Terms
Differential responses of induced pluripotent stem cell-derived cardiomyocytes to anisotropic strain depends on disease status.
Chun YW, Voyles DE, Rath R, Hofmeister LH, Boire TC, Wilcox H, Lee JH, Bellan LM, Hong CC, Sung HJ
(2015) J Biomech 48: 3890-6
MeSH Terms: Biomarkers, Cardiac Myosins, Cardiomyopathy, Dilated, Cell Culture Techniques, Cell Differentiation, Extracellular Matrix, Humans, Induced Pluripotent Stem Cells, Myocytes, Cardiac, Myosin Light Chains, Sarcomeres, Stress, Mechanical, Troponin T
Show Abstract · Added October 21, 2015
Primary dilated cardiomyopathy (DCM) is a non-ischemic heart disease with impaired pumping function of the heart. In this study, we used human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from a healthy volunteer and a primary DCM patient to investigate the impact of DCM on iPSC-CMs׳ responses to different types of anisotropic strain. A bioreactor system was established that generates cardiac-mimetic forces of 150 kPa at 5% anisotropic cyclic strain and 1 Hz frequency. After confirming cardiac induction of the iPSCs, it was determined that fibronectin was favorable to other extracellular matrix protein coatings (gelatin, laminin, vitronectin) in terms of viable cell area and density, and was therefore selected as the coating for further study. When iPSC-CMs were exposed to three strain conditions (no strain, 5% static strain, and 5% cyclic strain), the static strain elicited significant induction of sarcomere components in comparison to other strain conditions. However, this induction occurred only in iPSC-CMs from a healthy volunteer ("control iPSC-CMs"), not in iPSC-CMs from the DCM patient ("DCM iPSC-CMs"). The donor type also significantly influenced gene expressions of cell-cell and cell-matrix interaction markers in response to the strain conditions. Gene expression of connexin-43 (cell-cell interaction) had a higher fold change in healthy versus diseased iPSC-CMs under static and cyclic strain, as opposed to integrins α-5 and α-10 (cell-matrix interaction). In summary, our iPSC-CM-based study to model the effects of different strain conditions suggests that intrinsic, genetic-based differences in the cardiomyocyte responses to strain may influence disease manifestation in vivo.
Copyright © 2015 Elsevier Ltd. All rights reserved.
1 Communities
2 Members
0 Resources
13 MeSH Terms
A single-islet microplate assay to measure mouse and human islet insulin secretion.
Truchan NA, Brar HK, Gallagher SJ, Neuman JC, Kimple ME
(2015) Islets 7: e1076607
MeSH Terms: Adult, Animals, Biological Assay, Cell Culture Techniques, Female, Glucose, Humans, Insulin, Insulin Secretion, Islets of Langerhans, Male, Mice, Middle Aged, Young Adult
Show Abstract · Added August 2, 2016
One complication to comparing β-cell function among islet preparations, whether from genetically identical or diverse animals or human organ donors, is the number of islets required per assay. Islet numbers can be limiting, meaning that fewer conditions can be tested; other islet measurements must be excluded; or islets must be pooled from multiple animals/donors for each experiment. Furthermore, pooling islets negates the possibility of performing single-islet comparisons. Our aim was to validate a 96-well plate-based single islet insulin secretion assay that would be as robust as previously published methods to quantify glucose-stimulated insulin secretion from mouse and human islets. First, we tested our new assay using mouse islets, showing robust stimulation of insulin secretion 24 or 48 h after islet isolation. Next, we utilized the assay to quantify mouse islet function on an individual islet basis, measurements that would not be possible with the standard pooled islet assay methods. Next, we validated our new assay using human islets obtained from the Integrated Islet Distribution Program (IIDP). Human islets are known to have widely varying insulin secretion capacity, and using our new assay we reveal biologically relevant factors that are significantly correlated with human islet function, whether displayed as maximal insulin secretion response or fold-stimulation of insulin secretion. Overall, our results suggest this new microplate assay will be a useful tool for many laboratories, expert or not in islet techniques, to be able to precisely quantify islet insulin secretion from their models of interest.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Sox10 Regulates Stem/Progenitor and Mesenchymal Cell States in Mammary Epithelial Cells.
Dravis C, Spike BT, Harrell JC, Johns C, Trejo CL, Southard-Smith EM, Perou CM, Wahl GM
(2015) Cell Rep 12: 2035-48
MeSH Terms: Animals, Breast Neoplasms, Cell Culture Techniques, Cell Differentiation, Epithelial Cells, Epithelial-Mesenchymal Transition, Female, Fetus, Fibroblast Growth Factors, Gene Expression Regulation, Developmental, Gene Expression Regulation, Neoplastic, Humans, Mammary Glands, Animal, Mammary Glands, Human, Mesenchymal Stem Cells, Mice, SOXE Transcription Factors, Signal Transduction, Spheroids, Cellular, Tumor Cells, Cultured
Show Abstract · Added September 28, 2015
To discover mechanisms that mediate plasticity in mammary cells, we characterized signaling networks that are present in the mammary stem cells responsible for fetal and adult mammary development. These analyses identified a signaling axis between FGF signaling and the transcription factor Sox10. Here, we show that Sox10 is specifically expressed in mammary cells exhibiting the highest levels of stem/progenitor activity. This includes fetal and adult mammary cells in vivo and mammary organoids in vitro. Sox10 is functionally relevant, as its deletion reduces stem/progenitor competence whereas its overexpression increases stem/progenitor activity. Intriguingly, we also show that Sox10 overexpression causes mammary cells to undergo a mesenchymal transition. Consistent with these findings, Sox10 is preferentially expressed in stem- and mesenchymal-like breast cancers. These results demonstrate a signaling mechanism through which stem and mesenchymal states are acquired in mammary cells and suggest therapeutic avenues in breast cancers for which targeted therapies are currently unavailable.
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Cordon bleu promotes the assembly of brush border microvilli.
Grega-Larson NE, Crawley SW, Erwin AL, Tyska MJ
(2015) Mol Biol Cell 26: 3803-15
MeSH Terms: Actin Cytoskeleton, Actins, Animals, Cell Culture Techniques, HEK293 Cells, Humans, Mice, Microfilament Proteins, Microvilli, Protein Structure, Tertiary, Syndecan-2
Show Abstract · Added October 15, 2015
Microvilli are actin-based protrusions found on the surface of diverse cell types, where they amplify membrane area and mediate interactions with the external environment. In the intestinal tract, these protrusions play central roles in nutrient absorption and host defense and are therefore essential for maintaining homeostasis. However, the mechanisms controlling microvillar assembly remain poorly understood. Here we report that the multifunctional actin regulator cordon bleu (COBL) promotes the growth of brush border (BB) microvilli. COBL localizes to the base of BB microvilli via a mechanism that requires its proline-rich N-terminus. Knockdown and overexpression studies show that COBL is needed for BB assembly and sufficient to induce microvillar growth using a mechanism that requires functional WH2 domains. We also find that COBL acts downstream of the F-BAR protein syndapin-2, which drives COBL targeting to the apical domain. These results provide insight into a mechanism that regulates microvillar growth during epithelial differentiation and have significant implications for understanding the maintenance of intestinal homeostasis.
© 2015 Grega-Larson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
1 Communities
1 Members
0 Resources
11 MeSH Terms
KRAS-dependent sorting of miRNA to exosomes.
Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, Demory Beckler M, Weaver AM, Vickers K, Prasad N, Levy S, Zhang B, Coffey RJ, Patton JG
(2015) Elife 4: e07197
MeSH Terms: Biological Transport, Cell Culture Techniques, Cell Line, Exosomes, Humans, MicroRNAs, Proto-Oncogene Proteins p21(ras)
Show Abstract · Added July 28, 2015
Mutant KRAS colorectal cancer (CRC) cells release protein-laden exosomes that can alter the tumor microenvironment. To test whether exosomal RNAs also contribute to changes in gene expression in recipient cells, and whether mutant KRAS might regulate the composition of secreted microRNAs (miRNAs), we compared small RNAs of cells and matched exosomes from isogenic CRC cell lines differing only in KRAS status. We show that exosomal profiles are distinct from cellular profiles, and mutant exosomes cluster separately from wild-type KRAS exosomes. miR-10b was selectively increased in wild-type exosomes, while miR-100 was increased in mutant exosomes. Neutral sphingomyelinase inhibition caused accumulation of miR-100 only in mutant cells, suggesting KRAS-dependent miRNA export. In Transwell co-culture experiments, mutant donor cells conferred miR-100-mediated target repression in wild-type-recipient cells. These findings suggest that extracellular miRNAs can function in target cells and uncover a potential new mode of action for mutant KRAS in CRC.
1 Communities
6 Members
0 Resources
7 MeSH Terms
Automated analysis of cell-matrix adhesions in 2D and 3D environments.
Broussard JA, Diggins NL, Hummel S, Georgescu W, Quaranta V, Webb DJ
(2015) Sci Rep 5: 8124
MeSH Terms: Algorithms, Animals, Automation, Cell Culture Techniques, Cell Line, Tumor, Cell-Matrix Junctions, Collagen Type I, Green Fluorescent Proteins, Humans, Image Processing, Computer-Assisted, Paxillin, Rats, Reproducibility of Results, Time-Lapse Imaging
Show Abstract · Added February 19, 2015
Cell-matrix adhesions are of great interest because of their contribution to numerous biological processes, including cell migration, differentiation, proliferation, survival, tissue morphogenesis, wound healing, and tumorigenesis. Adhesions are dynamic structures that are classically defined on two-dimensional (2D) substrates, though the need to analyze adhesions in more physiologic three-dimensional (3D) environments is being increasingly recognized. However, progress has been greatly hampered by the lack of available tools to analyze adhesions in 3D environments. To address this need, we have developed a platform for the automated analysis, segmentation, and tracking of adhesions (PAASTA) based on an open source MATLAB framework, CellAnimation. PAASTA enables the rapid analysis of adhesion dynamics and many other adhesion characteristics, such as lifetime, size, and location, in 3D environments and on traditional 2D substrates. We manually validate PAASTA and utilize it to quantify rate constants for adhesion assembly and disassembly as well as adhesion lifetime and size in 3D matrices. PAASTA will be a valuable tool for characterizing adhesions and for deciphering the molecular mechanisms that regulate adhesion dynamics in 3D environments.
2 Communities
2 Members
0 Resources
14 MeSH Terms
Quantifying heterogeneity and dynamics of clonal fitness in response to perturbation.
Frick PL, Paudel BB, Tyson DR, Quaranta V
(2015) J Cell Physiol 230: 1403-12
MeSH Terms: Cell Culture Techniques, Cell Line, Cell Proliferation, Clone Cells, Cycloheximide, Gene Expression Regulation, Genetic Fitness, Humans, Protein Synthesis Inhibitors
Show Abstract · Added February 19, 2015
The dynamics of heterogeneous clonal lineages within a cell population, in aggregate, shape both normal and pathological biological processes. Studies of clonality typically relate the fitness of clones to their relative abundance, thus requiring long-term experiments and limiting conclusions about the heterogeneity of clonal fitness in response to perturbation. We present, for the first time, a method that enables a dynamic, global picture of clonal fitness within a mammalian cell population. This novel assay allows facile comparison of the structure of clonal fitness in a cell population across many perturbations. By utilizing high-throughput imaging, our methodology provides ample statistical power to define clonal fitness dynamically and to visualize the structure of perturbation-induced clonal fitness within a cell population. We envision that this technique will be a powerful tool to investigate heterogeneity in biological processes involving cell proliferation, including development and drug response.
© 2015 Wiley Periodicals, Inc.
2 Communities
2 Members
0 Resources
9 MeSH Terms
Cardiac epithelial-mesenchymal transition is blocked by monomethylarsonous acid (III).
Huang T, Barnett JV, Camenisch TD
(2014) Toxicol Sci 142: 225-38
MeSH Terms: Animals, Arsenites, Cell Culture Techniques, Cell Line, Cell Survival, Coronary Vessels, Epithelial-Mesenchymal Transition, Gene Expression Regulation, Developmental, Mice, Transgenic, Organogenesis, Organometallic Compounds, Pericardium, Stem Cells
Show Abstract · Added February 21, 2016
Arsenic exposure during embryonic development can cause ischemic heart pathologies later in adulthood which may originate from impairment in proper blood vessel formation. The arsenic-associated detrimental effects are mediated by arsenite (iAs(III)) and its most toxic metabolite, monomethylarsonous acid [MMA (III)]. The impact of MMA (III) on coronary artery development has not yet been studied. The key cellular process that regulates coronary vessel development is the epithelial-mesenchymal transition (EMT). During cardiac EMT, activated epicardial progenitor cells transform to mesenchymal cells to form the cellular components of coronary vessels. Smad2/3 mediated TGFβ2 signaling, the key regulator of cardiac EMT, is disrupted by arsenite exposure. In this study, we compared the cardiac toxicity of MMA (III) with arsenite. Epicardial progenitor cells are 15 times more sensitive to MMA (III) cytotoxicity when compared with arsenite. MMA (III) caused a significant blockage in epicardial cellular transformation and invasion at doses 10 times lower than arsenite. Key EMT genes including TGFβ ligands, TβRIII, Has2, CD44, Snail1, TBX18, and MMP2 were down regulated by MMA (III) exposure. MMA (III) disrupted Smad2/3 activation at a dose 20 times lower than arsenite. Both arsenite and MMA (III) significantly inhibited Erk1/2 and Erk5 phosphorylation. Nuclear translocation of Smad2/3 and Erk5 was also blocked by arsenical exposure. However, p38 activation, as well as smooth muscle differentiation, was refractory to the inhibition by the arsenicals. Collectively, these findings revealed that MMA (III) is a selective disruptor of cardiac EMT and as such may predispose to arsenic-associated cardiovascular disorders.
© The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Activation of the TRPV1 cation channel contributes to stress-induced astrocyte migration.
Ho KW, Lambert WS, Calkins DJ
(2014) Glia 62: 1435-51
MeSH Terms: Animals, Astrocytes, Calcium, Cell Culture Techniques, Cell Movement, Cells, Cultured, Cytoskeleton, Extracellular Space, Intracellular Space, Mice, Inbred C57BL, Rats, Sprague-Dawley, Retina, Stress, Mechanical, TRPV Cation Channels
Show Abstract · Added May 27, 2014
Astrocytes provide metabolic, structural, and synaptic support to neurons in normal physiology and also contribute widely to pathogenic processes in response to stress or injury. Reactive astrocytes can undergo cytoskeletal reorganization and increase migration through changes in intracellular Ca(2+) mediated by a variety of potential modulators. Here we tested whether migration of isolated retinal astrocytes following mechanical injury (scratch wound) involves the transient receptor potential vanilloid-1 channel (TRPV1), which contributes to Ca(2+)-mediated cytoskeletal rearrangement and migration in other systems. Application of the TRPV1-specific antagonists, capsazepine (CPZ) or 5'-iodoresiniferatoxin (IRTX), slowed migration by as much as 44%, depending on concentration. In contrast, treatment with the TRPV1-specific agonists, capsaicin (CAP) or resiniferatoxin (RTX) produced only a slight acceleration over a range of concentrations. Chelation of extracellular Ca(2+) with EGTA (1 mM) slowed astrocyte migration by 35%. Ratiometric imaging indicated that scratch wound induced a sharp 20% rise in astrocyte Ca(2+) that dissipated with distance from the wound. Treatment with IRTX both slowed and dramatically reduced the scratch-induced Ca(2+) increase. Both CPZ and IRTX influenced astrocyte cytoskeletal organization, especially near the wound edge. Taken together, our results indicate that astrocyte mobilization in response to mechanical stress involves influx of extracellular Ca(2+) and cytoskeletal changes in part mediated by TRPV1 activation.
© 2014 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
14 MeSH Terms