Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 175

Publication Record

Connections

Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma.
McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B, Fong L, Joseph RW, Pal SK, Reeves JA, Sznol M, Hainsworth J, Rathmell WK, Stadler WM, Hutson T, Gore ME, Ravaud A, Bracarda S, Suárez C, Danielli R, Gruenwald V, Choueiri TK, Nickles D, Jhunjhunwala S, Piault-Louis E, Thobhani A, Qiu J, Chen DS, Hegde PS, Schiff C, Fine GD, Powles T
(2018) Nat Med 24: 749-757
MeSH Terms: Adult, Aged, Aged, 80 and over, Antibodies, Monoclonal, Antibodies, Monoclonal, Humanized, Antineoplastic Combined Chemotherapy Protocols, Bevacizumab, Carcinoma, Renal Cell, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, Kaplan-Meier Estimate, Kidney Neoplasms, Male, Middle Aged, Mutation, Sunitinib, Treatment Outcome
Show Abstract · Added October 30, 2019
We describe results from IMmotion150, a randomized phase 2 study of atezolizumab (anti-PD-L1) alone or combined with bevacizumab (anti-VEGF) versus sunitinib in 305 patients with treatment-naive metastatic renal cell carcinoma. Co-primary endpoints were progression-free survival (PFS) in intent-to-treat and PD-L1+ populations. Intent-to-treat PFS hazard ratios for atezolizumab + bevacizumab or atezolizumab monotherapy versus sunitinib were 1.0 (95% confidence interval (CI), 0.69-1.45) and 1.19 (95% CI, 0.82-1.71), respectively; PD-L1+ PFS hazard ratios were 0.64 (95% CI, 0.38-1.08) and 1.03 (95% CI, 0.63-1.67), respectively. Exploratory biomarker analyses indicated that tumor mutation and neoantigen burden were not associated with PFS. Angiogenesis, T-effector/IFN-γ response, and myeloid inflammatory gene expression signatures were strongly and differentially associated with PFS within and across the treatments. These molecular profiles suggest that prediction of outcomes with anti-VEGF and immunotherapy may be possible and offer mechanistic insights into how blocking VEGF may overcome resistance to immune checkpoint blockade.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Integrative radiomics expression predicts molecular subtypes of primary clear cell renal cell carcinoma.
Yin Q, Hung SC, Rathmell WK, Shen L, Wang L, Lin W, Fielding JR, Khandani AH, Woods ME, Milowsky MI, Brooks SA, Wallen EM, Shen D
(2018) Clin Radiol 73: 782-791
MeSH Terms: Biomarkers, Tumor, Carcinoma, Renal Cell, Contrast Media, Humans, Imaging, Three-Dimensional, Kidney Neoplasms, Magnetic Resonance Imaging, Multimodal Imaging, Neoplasm Grading, Neoplasm Staging, Positron-Emission Tomography, Retrospective Studies
Show Abstract · Added October 30, 2019
AIM - To identify combined positron-emission tomography (PET)/magnetic resonance imaging (MRI)-based radiomics as a surrogate biomarker of intratumour disease risk for molecular subtype ccA and ccB in patients with primary clear cell renal cell carcinoma (ccRCC).
MATERIALS AND METHODS - PET/MRI data were analysed retrospectively from eight patients. One hundred and sixty-eight radiomics features for each tumour sampling based on the regionally sampled tumours with 23 specimens were extracted. Sparse partial least squares discriminant analysis (SPLS-DA) was applied to feature screening on high-throughput radiomics features and project the selected features to low-dimensional intrinsic latent components as radiomics signatures. In addition, multilevel omics datasets were leveraged to explore the complementing information and elevate the discriminative ability.
RESULTS - The correct classification rate (CCR) for molecular subtype classification by SPLS-DA using only radiomics features was 86.96% with permutation test p=7×10. When multi-omics datasets including mRNA, microvascular density, and clinical parameters from each specimen were combined with radiomics features to refine the model of SPLS-DA, the best CCR was 95.65% with permutation test, p<10; however, even in the case of generating the classification based on transcription features, which is the reference standard, there is roughly 10% classification ambiguity. Thus, this classification level (86.96-95.65%) of the proposed method represents the discriminating level that is consistent with reality.
CONCLUSION - Featured with high accuracy, an integrated multi-omics model of PET/MRI-based radiomics could be the first non-invasive investigation for disease risk stratification and guidance of treatment in patients with primary ccRCC.
Published by Elsevier Ltd.
0 Communities
1 Members
0 Resources
MeSH Terms
Haploinsufficiency for Microtubule Methylation Is an Early Driver of Genomic Instability in Renal Cell Carcinoma.
Chiang YC, Park IY, Terzo EA, Tripathi DN, Mason FM, Fahey CC, Karki M, Shuster CB, Sohn BH, Chowdhury P, Powell RT, Ohi R, Tsai YS, de Cubas AA, Khan A, Davis IJ, Strahl BD, Parker JS, Dere R, Walker CL, Rathmell WK
(2018) Cancer Res 78: 3135-3146
MeSH Terms: Animals, Carcinogenesis, Carcinoma, Renal Cell, Cell Line, Tumor, Chromosomes, Human, Pair 3, Fibroblasts, Gene Knockdown Techniques, Genomic Instability, Haploinsufficiency, Histone-Lysine N-Methyltransferase, Histones, Humans, Kidney Neoplasms, Kidney Tubules, Proximal, Lysine, Methylation, Mice, Micronuclei, Chromosome-Defective, Microtubules
Show Abstract · Added October 30, 2019
Loss of the short arm of chromosome 3 (3p) occurs early in >95% of clear cell renal cell carcinoma (ccRCC). Nearly ubiquitous 3p loss in ccRCC suggests haploinsufficiency for 3p tumor suppressors as early drivers of tumorigenesis. We previously reported methyltransferase , which trimethylates H3 histones on lysine 36 (H3K36me3) and is located in the 3p deletion, to also trimethylate microtubules on lysine 40 (αTubK40me3) during mitosis, with αTubK40me3 required for genomic stability. We now show that monoallelic, -deficient cells retaining H3K36me3, but not αTubK40me3, exhibit a dramatic increase in mitotic defects and micronuclei count, with increased viability compared with biallelic loss. In -inactivated human kidney cells, rescue with a pathogenic mutant deficient for microtubule (αTubK40me3), but not histone (H3K36me3) methylation, replicated this phenotype. Genomic instability (micronuclei) was also a hallmark of patient-derived cells from ccRCC. These data show that the tumor suppressor displays a haploinsufficiency phenotype disproportionately impacting microtubule methylation and serves as an early driver of genomic instability. Loss of a single allele of a chromatin modifier plays a role in promoting oncogenesis, underscoring the growing relevance of tumor suppressor haploinsufficiency in tumorigenesis. .
©2018 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
MeSH Terms
Phase II Study of Two Weeks on, One Week off Sunitinib Scheduling in Patients With Metastatic Renal Cell Carcinoma.
Jonasch E, Slack RS, Geynisman DM, Hasanov E, Milowsky MI, Rathmell WK, Stovall S, Juarez D, Gilchrist TR, Pruitt L, Ornstein MC, Plimack ER, Tannir NM, Rini BI
(2018) J Clin Oncol 36: 1588-1593
MeSH Terms: Administration, Oral, Aged, Aged, 80 and over, Antineoplastic Agents, Carcinoma, Renal Cell, Drug Administration Schedule, Female, Humans, Kidney Neoplasms, Male, Middle Aged, Sunitinib, Surveys and Questionnaires, Treatment Outcome
Show Abstract · Added October 30, 2019
Purpose Standard frontline treatment of patients with metastatic renal cell carcinoma currently includes sunitinib. A barrier to long-term treatment with sunitinib includes the development of significant adverse effects, including diarrhea, hand-foot syndrome (HFS), and fatigue. This trial assessed the effect of an alternate 2 weeks on, 1 week off (2/1) schedule of sunitinib on toxicity and efficacy in previously untreated patients with metastatic renal cell carcinoma. Methods Patients started with oral administration of 50 mg sunitinib on a 2/1 schedule and underwent schedule and dose alterations if toxicity developed. The primary end point was < 15% grade ≥ 3 fatigue, diarrhea, or HFS. With 60 patients, the upper bound of the CI would fall below the published 4/2 schedule grade ≥ 3 toxicity rate of 25% to 30%. Results Fifty-nine patients were treated between August 2014 and March 2016. Seventy-seven percent were intermediate or poor risk per Memorial Sloan Kettering Cancer Center criteria. With a median follow-up of 17 months, 25% of patients experienced grade 3 fatigue, HFS, or diarrhea; 37% required a dose reduction, and 10% discontinued because of toxicity. The overall response rate was 57%, median progression-free survival was 13.7 months, and median overall survival was not reached. At 12 weeks, Functional Assessment of Cancer Therapy-General scores dropped between 0% and 10% from baseline, with less reduction in patients who continued treatment longer. Conclusion The primary end point of decreased grade 3 toxicity was not met; however, treatment with a 2/1 sunitinib schedule is associated with a lack of grade 4 toxicity, a low patient discontinuation rate, and high efficacy.
0 Communities
1 Members
0 Resources
MeSH Terms
The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma.
Ricketts CJ, De Cubas AA, Fan H, Smith CC, Lang M, Reznik E, Bowlby R, Gibb EA, Akbani R, Beroukhim R, Bottaro DP, Choueiri TK, Gibbs RA, Godwin AK, Haake S, Hakimi AA, Henske EP, Hsieh JJ, Ho TH, Kanchi RS, Krishnan B, Kwiatkowski DJ, Lui W, Merino MJ, Mills GB, Myers J, Nickerson ML, Reuter VE, Schmidt LS, Shelley CS, Shen H, Shuch B, Signoretti S, Srinivasan R, Tamboli P, Thomas G, Vincent BG, Vocke CD, Wheeler DA, Yang L, Kim WY, Robertson AG, Cancer Genome Atlas Research Network, Spellman PT, Rathmell WK, Linehan WM
(2018) Cell Rep 23: 313-326.e5
MeSH Terms: Biomarkers, Tumor, Carcinoma, Renal Cell, Cyclin-Dependent Kinase Inhibitor p16, DNA-Binding Proteins, Genome, Human, Humans, Kidney Neoplasms, Metabolic Networks and Pathways, Nuclear Proteins, PTEN Phosphohydrolase, Phenotype, Survival Analysis, Transcription Factors, Tumor Suppressor Proteins, Ubiquitin Thiolesterase
Show Abstract · Added October 30, 2019
Renal cell carcinoma (RCC) is not a single disease, but several histologically defined cancers with different genetic drivers, clinical courses, and therapeutic responses. The current study evaluated 843 RCC from the three major histologic subtypes, including 488 clear cell RCC, 274 papillary RCC, and 81 chromophobe RCC. Comprehensive genomic and phenotypic analysis of the RCC subtypes reveals distinctive features of each subtype that provide the foundation for the development of subtype-specific therapeutic and management strategies for patients affected with these cancers. Somatic alteration of BAP1, PBRM1, and PTEN and altered metabolic pathways correlated with subtype-specific decreased survival, while CDKN2A alteration, increased DNA hypermethylation, and increases in the immune-related Th2 gene expression signature correlated with decreased survival within all major histologic subtypes. CIMP-RCC demonstrated an increased immune signature, and a uniform and distinct metabolic expression pattern identified a subset of metabolically divergent (MD) ChRCC that associated with extremely poor survival.
Published by Elsevier Inc.
0 Communities
2 Members
0 Resources
15 MeSH Terms
The Clinical Presentation, Survival Outcomes, and Management of Patients With Renal Cell Carcinoma and Cardiac Metastasis Without Inferior Vena Cava Involvement: Results From a Pooled Clinical Trial Database and Systematic Review of Reported Cases.
Viteri Malone MA, Ares GR, De Velasco G, Brandão R, Lin X, Norton C, Simantov R, Moslehi J, Krajewski KM, Choueiri TK, McKay RR
(2018) Clin Genitourin Cancer 16: e327-e333
MeSH Terms: Adult, Aged, Carcinoma, Renal Cell, Clinical Trials as Topic, Female, Heart Neoplasms, Humans, Kidney Neoplasms, Male, Middle Aged, Molecular Targeted Therapy, Progression-Free Survival, Retrospective Studies, Survival Analysis, Treatment Outcome, Vena Cava, Inferior
Show Abstract · Added April 22, 2018
BACKGROUND - Cardiac metastases from renal cell carcinoma (RCC) are uncommon and there are limited data regarding the presentation and outcomes of this population. The objective of this study was to evaluate the characteristics and outcomes of patients with RCC with cardiac metastasis without inferior vena cava (IVC) involvement.
MATERIALS AND METHODS - We conducted a pooled retrospective analysis of metastatic RCC patients treated in 4 clinical trials. Additionally, we conducted a systematic review of cases reported in the literature from 1973 to 2015. Patients with cardiac metastases from RCC without IVC involvement were included. Patient and disease characteristics were described. Additionally, treatments, response to therapy, and survival outcomes were summarized.
RESULTS - Of 1765 metastatic RCC patients in the clinical trials database, 10 had cardiac metastases without IVC involvement. All patients received treatment with targeted therapy. There was 1 observed partial response (10%) and 6 patients showed stable disease (60%). The median progression-free survival was 6.9 months. The systematic review of reported clinical cases included 39 patients. In these patients, the most common cardiac site of involvement was the right ventricle (51%; n = 20). Patients were treated with medical (28%; n = 11) and/or surgical treatment (49%; n = 19) depending on whether disease was isolated (n = 13) or multifocal (n = 26).
CONCLUSION - To our knowledge, this is the first series to report on the presentation and outcomes of patients with cardiac metastasis without IVC involvement in RCC. We highlight that although the frequency of patients with cardiac metastases without IVC involvement is low, these patients have a unique clinical presentation and warrant special multidisciplinary management.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Ultrasound Molecular Imaging of VEGFR-2 in Clear-Cell Renal Cell Carcinoma Tracks Disease Response to Antiangiogenic and Notch-Inhibition Therapy.
Rojas JD, Lin F, Chiang YC, Chytil A, Chong DC, Bautch VL, Rathmell WK, Dayton PA
(2018) Theranostics 8: 141-155
MeSH Terms: Angiogenesis Inhibitors, Animals, Carcinoma, Renal Cell, Contrast Media, Female, Immunohistochemistry, Kidney Neoplasms, Mice, Molecular Imaging, Platelet Endothelial Cell Adhesion Molecule-1, Vascular Endothelial Growth Factor Receptor-2
Show Abstract · Added October 30, 2019
Metastatic clear-cell renal cell carcinoma (ccRCC) affects thousands of patients worldwide each year. Antiangiogenic therapy has been shown to have beneficial effects initially, but resistance is eventually developed. Therefore, it is important to accurately track the response of cancer to different therapeutics in order to appropriately adjust the therapy to maximize efficacy. Change in tumor volume is the current gold standard for determining efficacy of treatment. However, functional variations can occur much earlier than measurable volume changes. Contrast-enhanced ultrasound (CEUS) is an important tool for assessing tumor progression and response to therapy, since it can monitor functional changes in the physiology. In this study, we demonstrate how ultrasound molecular imaging (USMI) can accurately track the evolution of the disease and molecular response to treatment. A cohort of NSG (NOD/scid/gamma) mice was injected with ccRCC cells and treated with either the VEGF inhibitor SU (Sunitinib malate, Selleckchem, TX, USA) or the Notch pathway inhibitor GSI (Gamma secretase inhibitor, PF-03084014, Pfizer, New York, NY, USA), or started on SU and later switched to GSI (Switch group). The therapies used in the study focus on disrupting angiogenesis and proper vessel development. SU inhibits signaling of vascular endothelial growth factor (VEGF), which is responsible for the sprouting of new vasculature, and GSI inhibits the Notch pathway, which is a key factor in the correct maturation of newly formed vasculature. Microbubble contrast agents targeted to VEGFR-2 (VEGF Receptor) were delivered as a bolus, and the bound agents were imaged in 3D after the free-flowing contrast was cleared from the body. Additionally, the tumors were harvested at the end of the study and stained for CD31. The results show that MI can detect changes in VEGFR-2 expression in the group treated with SU within a week of the start of treatment, while differences in volume only become apparent after the mice have been treated for three weeks. Furthermore, USMI can detect response to therapy in 92% of cases after 1 week of treatment, while the detection rate is only 40% for volume measurements. The amount of targeting for the GSI and Control groups was high throughout the duration of the study, while that of the SU and Switch groups remained low. However, the amount of targeting in the Switch group increased to levels similar to those of the Control group after the treatment was switched to GSI. CD31 staining indicates significantly lower levels of patent vasculature for the SU group compared to the Control and GSI groups. Therefore, the results parallel the expected physiological changes in the tumor, since GSI promotes angiogenesis through the VEGF pathway, while SU inhibits it. This study demonstrates that MI can track disease progression and assess functional changes in tumors before changes in volume are apparent, and thus, CEUS can be a valuable tool for assessing response to therapy in disease. Future work is required to determine whether levels of VEGFR-2 targeting correlate with eventual survival outcomes.
0 Communities
1 Members
0 Resources
MeSH Terms
Efficient Interplay Effect Mitigation for Proton Pencil Beam Scanning by Spot-Adapted Layered Repainting Evenly Spread out Over the Full Breathing Cycle.
Poulsen PR, Eley J, Langner U, Simone CB, Langen K
(2018) Int J Radiat Oncol Biol Phys 100: 226-234
MeSH Terms: Bronchial Neoplasms, Carcinoma, Non-Small-Cell Lung, Carcinoma, Renal Cell, Exhalation, Four-Dimensional Computed Tomography, Humans, Inhalation, Kidney Neoplasms, Liver Neoplasms, Lung Neoplasms, Neoplasms, Organ Motion, Pancreatic Neoplasms, Proton Therapy, Radiotherapy Planning, Computer-Assisted, Respiration, Software, Time Factors
Show Abstract · Added March 30, 2020
PURPOSE - To develop and implement a practical repainting method for efficient interplay effect mitigation in proton pencil beam scanning (PBS).
METHODS AND MATERIALS - A new flexible repainting scheme with spot-adapted numbers of repainting evenly spread out over the whole breathing cycle (assumed to be 4 seconds) was developed. Twelve fields from 5 thoracic and upper abdominal PBS plans were delivered 3 times using the new repainting scheme to an ion chamber array on a motion stage. One time was static and 2 used 4-second, 3-cm peak-to-peak sinusoidal motion with delivery started at maximum inhalation and maximum exhalation. For comparison, all dose measurements were repeated with no repainting and with 8 repaintings. For each motion experiment, the 3%/3-mm gamma pass rate was calculated using the motion-convolved static dose as the reference. Simulations were first validated with the experiments and then used to extend the study to 0- to 5-cm motion magnitude, 2- to 6-second motion periods, patient-measured liver tumor motion, and 1- to 6-fraction treatments. The effect of the proposed method was evaluated for the 5 clinical cases using 4-dimensional (4D) dose reconstruction in the planning 4D computed tomography scan. The target homogeneity index, HI = (D - D)/D, of a single-fraction delivery is reported, where D and D is the dose delivered to 2% and 98% of the target, respectively, and D is the mean dose.
RESULTS - The gamma pass rates were 59.6% ± 9.7% with no repainting, 76.5% ± 10.8% with 8 repaintings, and 92.4% ± 3.8% with the new repainting scheme. Simulations reproduced the experimental gamma pass rates with a 1.3% root-mean-square error and demonstrated largely improved gamma pass rates with the new repainting scheme for all investigated motion scenarios. One- and two-fraction deliveries with the new repainting scheme had gamma pass rates similar to those of 3-4 and 6-fraction deliveries with 8 repaintings. The mean HI for the 5 clinical cases was 14.2% with no repainting, 13.7% with 8 repaintings, 12.0% with the new repainting scheme, and 11.6% for the 4D dose without interplay effects.
CONCLUSIONS - A novel repainting strategy for efficient interplay effect mitigation was proposed, implemented, and shown to outperform conventional repainting in experiments, simulations, and dose reconstructions. This strategy could allow for safe and more optimal clinical delivery of thoracic and abdominal proton PBS and better facilitate hypofractionated and stereotactic treatments.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
HNF1B Loss Exacerbates the Development of Chromophobe Renal Cell Carcinomas.
Sun M, Tong P, Kong W, Dong B, Huang Y, Park IY, Zhou L, Liu XD, Ding Z, Zhang X, Bai S, German P, Powell R, Wang Q, Tong X, Tannir NM, Matin SF, Rathmell WK, Fuller GN, McCutcheon IE, Walker CL, Wang J, Jonasch E
(2017) Cancer Res 77: 5313-5326
MeSH Terms: Aneuploidy, Animals, Apoptosis, Carcinoma, Renal Cell, Cell Cycle, Cell Cycle Proteins, Cell Proliferation, Cells, Cultured, Chromosomal Instability, Embryo, Mammalian, Fibroblasts, Hepatocyte Nuclear Factor 1-beta, Humans, Kidney Neoplasms, Mad2 Proteins, Mice, Protein-Serine-Threonine Kinases
Show Abstract · Added October 30, 2019
Chromophobe renal cell carcinoma (ChRCC) is characterized by major changes in chromosomal copy number (CN). No model is available to precisely elucidate the molecular drivers of this tumor type. HNF1B is a master regulator of gene expression. Here, we report that the transcription factor HNF1B is downregulated in the majority of ChRCC and that the magnitude of loss is unique to ChRCC. We also observed a strong correlation between reduced expression and aneuploidy in ChRCC patients. In murine embryonic fibroblasts or ACHN cells, deficiency reduced expression of the spindle checkpoint proteins MAD2L1 and BUB1B, and the cell-cycle checkpoint proteins RB1 and p27. Furthermore, it altered the chromatin accessibility of , , and genes and triggered aneuploidy development. Analysis of The Cancer Genome Atlas database revealed mutations in 33% of ChRCC where expression was repressed. In clinical specimens, combining loss with mutation produced an association with poor patient prognosis. In cells, combining loss and mutation increased cell proliferation and aneuploidy. Our results show how loss leads to abnormal mitotic protein regulation and induction of aneuploidy. We propose that coordinate loss of and may enhance cellular survival and confer an aggressive phenotype in ChRCC. .
©2017 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
MeSH Terms
Associations between Tumor Vascularity, Vascular Endothelial Growth Factor Expression and PET/MRI Radiomic Signatures in Primary Clear-Cell-Renal-Cell-Carcinoma: Proof-of-Concept Study.
Yin Q, Hung SC, Wang L, Lin W, Fielding JR, Rathmell WK, Khandani AH, Woods ME, Milowsky MI, Brooks SA, Wallen EM, Shen D
(2017) Sci Rep 7: 43356
MeSH Terms: Adult, Aged, Carcinoma, Renal Cell, Female, Gene Expression, Humans, Image Interpretation, Computer-Assisted, Kidney Neoplasms, Magnetic Resonance Imaging, Male, Middle Aged, Neovascularization, Pathologic, Positron-Emission Tomography, Proof of Concept Study, Retrospective Studies, Tumor Burden, Vascular Endothelial Growth Factor A
Show Abstract · Added October 30, 2019
Studies have shown that tumor angiogenesis is an essential process for tumor growth, proliferation and metastasis. Also, tumor angiogenesis is an important prognostic factor of clear cell renal cell carcinoma (ccRCC), as well as a factor in guiding treatment with antiangiogenic agents. Here, we attempted to find the associations between tumor angiogenesis and radiomic imaging features from PET/MRI. Specifically, sparse canonical correlation analysis was conducted on 3 feature datasets (i.e., radiomic imaging features, tumor microvascular density (MVD), and vascular endothelial growth factor (VEGF) expression) from 9 patients with primary ccRCC. In order to overcome the potential bias of intratumoral heterogeneity of angiogenesis, this study investigated the relationship between regional expressions of angiogenesis and VEGF, and localized radiomic features from different parts within the tumors. Our study highlighted the significant strong correlations between radiomic features and MVD, and also demonstrated that the spatiotemporal features extracted from DCE-MRI provided stronger radiomic correlation to MVD than the textural features extracted from Dixon sequences and FDG PET. Furthermore, PET/MRI, which takes advantage of the combined functional and structural information, had higher radiomics correlation to MVD than solely utilizing PET or MRI alone.
0 Communities
1 Members
0 Resources
MeSH Terms