Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 116

Publication Record

Connections

Metabolic activation of polycyclic aromatic hydrocarbons and aryl and heterocyclic amines by human cytochromes P450 2A13 and 2A6.
Shimada T, Murayama N, Yamazaki H, Tanaka K, Takenaka S, Komori M, Kim D, Guengerich FP
(2013) Chem Res Toxicol 26: 529-37
MeSH Terms: Amines, Aryl Hydrocarbon Hydroxylases, Biotransformation, Carcinogens, Cytochrome P-450 CYP1B1, Cytochrome P-450 CYP2A6, Environmental Pollutants, Escherichia coli, Genes, Bacterial, Heterocyclic Compounds, Humans, Molecular Docking Simulation, Polycyclic Aromatic Hydrocarbons, Salmonella typhimurium
Show Abstract · Added March 7, 2014
Human cytochrome P450 (P450) 2A13 was found to interact with several polycyclic aromatic hydrocarbons (PAHs) to produce Type I binding spectra, including acenaphthene, acenaphthylene, benzo[c]phenanthrene, fluoranthene, fluoranthene-2,3-diol, and 1-nitropyrene. P450 2A6 also interacted with acenaphthene and acenaphthylene, but not with fluoranthene, fluoranthene-2,3-diol, or 1-nitropyrene. P450 1B1 is well-known to oxidize many carcinogenic PAHs, and we found that several PAHs (i.e., 7,12-dimethylbenz[a]anthracene, 7,12-dimethylbenz[a]anthracene-5,6-diol, benzo[c]phenanthrene, fluoranthene, fluoranthene-2,3-diol, 5-methylchrysene, benz[a]pyrene-4,5-diol, benzo[a]pyrene-7,8-diol, 1-nitropyrene, 2-aminoanthracene, 2-aminofluorene, and 2-acetylaminofluorene) interacted with P450 1B1, producing Reverse Type I binding spectra. Metabolic activation of PAHs and aryl- and heterocyclic amines to genotoxic products was examined in Salmonella typhimurium NM2009, and we found that P450 2A13 and 2A6 (as well as P450 1B1) were able to activate several of these procarcinogens. The former two enzymes were particularly active in catalyzing 2-aminofluorene and 2-aminoanthracene activation, and molecular docking simulations supported the results with these procarcinogens, in terms of binding in the active sites of P450 2A13 and 2A6. These results suggest that P450 2A enzymes, as well as P450 Family 1 enzymes including P450 1B1, are major enzymes involved in activating PAHs and aryl- and heterocyclic amines, as well as tobacco-related nitrosamines.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Binding of diverse environmental chemicals with human cytochromes P450 2A13, 2A6, and 1B1 and enzyme inhibition.
Shimada T, Kim D, Murayama N, Tanaka K, Takenaka S, Nagy LD, Folkman LM, Foroozesh MK, Komori M, Yamazaki H, Guengerich FP
(2013) Chem Res Toxicol 26: 517-28
MeSH Terms: Aryl Hydrocarbon Hydroxylases, Binding Sites, Carcinogens, Cytochrome P-450 CYP1B1, Cytochrome P-450 CYP2A6, Environmental Pollutants, Escherichia coli, Flavonoids, Humans, Molecular Docking Simulation, Polycyclic Aromatic Hydrocarbons
Show Abstract · Added March 7, 2014
A total of 68 chemicals including derivatives of naphthalene, phenanthrene, fluoranthene, pyrene, biphenyl, and flavone were examined for their abilities to interact with human P450s 2A13 and 2A6. Fifty-one of these 68 chemicals induced stronger Type I binding spectra (iron low- to high-spin state shift) with P450 2A13 than those seen with P450 2A6, i.e., the spectral binding intensities (ΔAmax/Ks ratio) determined with these chemicals were always higher for P450 2A13. In addition, benzo[c]phenanthrene, fluoranthene, 2,3-dihydroxy-2,3-dihydrofluoranthene, pyrene, 1-hydroxypyrene, 1-nitropyrene, 1-acetylpyrene, 2-acetylpyrene, 2,5,2',5'-tetrachlorobiphenyl, 7-hydroxyflavone, chrysin, and galangin were found to induce a Type I spectral change only with P450 2A13. Coumarin 7-hydroxylation, catalyzed by P450 2A13, was strongly inhibited by 2'-methoxy-5,7-dihydroxyflavone, 2-ethynylnaphthalene, 2'-methoxyflavone, 2-naphththalene propargyl ether, acenaphthene, acenaphthylene, naphthalene, 1-acetylpyrene, flavanone, chrysin, 3-ethynylphenanthrene, flavone, and 7-hydroxyflavone; these chemicals induced Type I spectral changes with low Ks values. On the basis of the intensities of the spectral changes and inhibition of P450 2A13, we classified the 68 chemicals into eight groups based on the order of affinities for these chemicals and inhibition of P450 2A13. The metabolism of chemicals by P450 2A13 during the assays explained why some of the chemicals that bound well were poor inhibitors of P450 2A13. Finally, we compared the 68 chemicals for their abilities to induce Type I spectral changes of P450 2A13 with the Reverse Type I binding spectra observed with P450 1B1: 45 chemicals interacted with both P450s 2A13 and 1B1, indicating that the two enzymes have some similarty of structural features regarding these chemicals. Molecular docking analyses suggest similarities at the active sites of these P450 enzymes. These results indicate that P450 2A13, as well as Family 1 P450 enzymes, is able to catalyze many detoxication and activation reactions with chemicals of environmental interest.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Interaction of cigarette smoking and carcinogen-metabolizing polymorphisms in the risk of colorectal polyps.
Fu Z, Shrubsole MJ, Li G, Smalley WE, Hein DW, Cai Q, Ness RM, Zheng W
(2013) Carcinogenesis 34: 779-86
MeSH Terms: Adenoma, Adult, Aged, Carcinogens, Case-Control Studies, Colonic Polyps, Colorectal Neoplasms, Disease Susceptibility, Enzymes, Female, Genotype, Humans, Hyperplasia, Interviews as Topic, Male, Middle Aged, Polymorphism, Genetic, Risk, Risk Factors, Smoking, Tobacco, Tobacco Smoke Pollution
Show Abstract · Added March 7, 2014
The causal role of cigarette smoking in the risk of colorectal neoplasm has been suggested but not established. In a case-control study including 2060 colorectal polyp patients and 3336 polyp-free controls, we evaluated 21 functional genetic variants to construct a tobacco-carcinogen-metabolizing genetic risk score. Data regarding cigarette smoking were obtained through telephone interviews. Cigarette smoking was associated with an elevated risk of both adenomas and hyperplastic polyps. The association with smoking was stronger in participants with a high carcinogen-metabolizing risk score than those with a low risk score. Smoking 30 or more cigarettes per day was associated with a 1.7-fold elevated risk of any polyps (95% confidence interval = 1.3-2.2) among those with a low genetic risk score and 2.9-fold elevated risk (95% confidence interval = 1.8-4.8) among those with a high genetic risk score (P interaction = 0.025). A similar pattern of interaction was observed in analyses conducted separately for those with adenomas only (P interaction = 0.039) and hyperplastic polyps only (P interaction = 0.024). Interaction between carcinogen-metabolizing genetic risk and cigarette smoking was found in relation to high-risk adenomas (P interaction = 0.010) but not low-risk adenomas (P interaction = 0.791). No apparent interaction was found for duration of smoking. This study shows that the association between cigarette smoking and colorectal polyp risk is modified by tobacco-carcinogen-metabolizing polymorphisms, providing support for a causal role of cigarette smoking in the etiology of colorectal tumors.
0 Communities
4 Members
0 Resources
22 MeSH Terms
Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors.
Schwitalla S, Ziegler PK, Horst D, Becker V, Kerle I, Begus-Nahrmann Y, Lechel A, Rudolph KL, Langer R, Slotta-Huspenina J, Bader FG, Prazeres da Costa O, Neurath MF, Meining A, Kirchner T, Greten FR
(2013) Cancer Cell 23: 93-106
MeSH Terms: Adenoma, Animals, Carcinogens, Carcinoma, Colorectal Neoplasms, Disease Models, Animal, Lymph Nodes, Mice, Mutagenesis, Site-Directed, Neoplasm Invasiveness, Neoplasm Metastasis, Tumor Microenvironment, Tumor Suppressor Protein p53
Show Abstract · Added June 14, 2013
Loss of p53 is considered to allow progression of colorectal tumors from the adenoma to the carcinoma stage. Using mice with an intestinal epithelial cell (IEC)-specific p53 deletion, we demonstrate that loss of p53 alone is insufficient to initiate intestinal tumorigenesis but markedly enhances carcinogen-induced tumor incidence and leads to invasive cancer and lymph node metastasis. Whereas p53 controls DNA damage and IEC survival during the initiation stage, loss of p53 during tumor progression is associated with increased intestinal permeability, causing formation of an NF-κB-dependent inflammatory microenvironment and the induction of epithelial-mesenchymal transition. Thus, we propose a p53-controlled tumor-suppressive function that is independent of its well-established role in cell-cycle regulation, apoptosis, and senescence.
Copyright © 2013 Elsevier Inc. All rights reserved.
0 Communities
0 Members
0 Resources
13 MeSH Terms
Mapping serum albumin adducts of the food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by data-dependent tandem mass spectrometry.
Peng L, Dasari S, Tabb DL, Turesky RJ
(2012) Chem Res Toxicol 25: 2179-93
MeSH Terms: Amino Acid Sequence, Animals, Carcinogens, Cooking, Dipeptidases, Humans, Imidazoles, Leucyl Aminopeptidase, Meat, Molecular Sequence Data, Nitroimidazoles, Oxidation-Reduction, Pronase, Pyridines, Serum Albumin, Tandem Mass Spectrometry, Trypsin
Show Abstract · Added June 26, 2014
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic aromatic amine that is formed during the cooking of meats. PhIP is a potential human carcinogen: it undergoes metabolic activation to form electrophilic metabolites that bind to DNA and proteins, including serum albumin (SA). The structures of PhIP-SA adducts formed in vivo are unknown and require elucidation before PhIP protein adducts can be implemented as biomarkers in human studies. We previously examined the reaction of genotoxic N-oxidized metabolites of PhIP with human SA in vitro and identified covalent adducts formed at cysteine³⁴ (Cys³⁴); however, other adduction products were thought to occur. We have now identified adducts of PhIP formed at multiple sites of SA reacted with isotopic mixtures of electrophilic metabolites of PhIP and 2-amino-1-methyl-6-[²H₅]-phenylimidazo[4,5-b]pyridine ([²H₅]-PhIP). The metabolites used for study were 2-nitro-1-methyl-6-phenylimidazo[4,5-b]pyridine (NO₂-PhIP), 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP), or N-acetyloxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-acetoxy-PhIP). Following proteolytic digestion, PhIP-adducted peptides were separated by ultra performance liquid chromatography and characterized by ion trap mass spectrometry, employing isotopic data-dependent scanning. Analysis of the tryptic or tryptic/chymotryptic digests of SA modified with NO₂-PhIP revealed that adduction occurred at Cys³⁴, Lys¹⁹⁵, Lys¹⁹⁹, Lys³⁵¹, Lys⁵⁴¹, Tyr¹³⁸, Tyr¹⁵⁰, Tyr⁴⁰¹, and Tyr⁴¹¹, whereas the only site of HONH-PhIP adduction was detected at Cys³⁴. N-Acetoxy-PhIP, a penultimate metabolite of PhIP that reacts with DNA to form covalent adducts, did not appear to form stable adducts with SA; instead, PhIP and 2-amino-1-methyl-6-(5-hydroxy)-phenylimidazo[4,5-b]pyridine, an aqueous reaction product of the proposed nitrenium ion of PhIP, were recovered during the proteolysis of N-acetoxy-PhIP-modified SA. Some of these SA adduction products of PhIP may be implemented in molecular epidemiology studies to assess the role of well-done cooked meat, PhIP, and the risk of cancer.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Contributions of human enzymes in carcinogen metabolism.
Rendic S, Guengerich FP
(2012) Chem Res Toxicol 25: 1316-83
MeSH Terms: Carcinogens, Chemoprevention, Cytochrome P-450 Enzyme System, Enzymes, Humans, Inactivation, Metabolic, Risk Assessment
Show Abstract · Added March 26, 2014
Considerable support exists for the roles of metabolism in modulating the carcinogenic properties of chemicals. In particular, many of these compounds are pro-carcinogens that require activation to electrophilic forms to exert genotoxic effects. We systematically analyzed the existing literature on the metabolism of carcinogens by human enzymes, which has been developed largely in the past 25 years. The metabolism and especially bioactivation of carcinogens are dominated by cytochrome P450 enzymes (66% of bioactivations). Within this group, six P450s--1A1, 1A2, 1B1, 2A6, 2E1, and 3A4--accounted for 77% of the P450 activation reactions. The roles of these P450s can be compared with those estimated for drug metabolism and should be considered in issues involving enzyme induction, chemoprevention, molecular epidemiology, interindividual variations, and risk assessment.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Radon and lung cancer.
Sethi TK, El-Ghamry MN, Kloecker GH
(2012) Clin Adv Hematol Oncol 10: 157-64
MeSH Terms: Carcinogens, Environmental, Case-Control Studies, Humans, Lung Neoplasms, Neoplasms, Radon, Risk Factors, Smoking, United States
Show Abstract · Added November 26, 2015
Lung cancer is the leading cause of cancer-related deaths worldwide. Radon exposure is the second leading cause of lung cancer, following tobacco smoke. Radon is not only an independent risk factor; it also increases the risk of lung cancer in smokers. Numerous cohort, case-control, and experimental studies have established the carcinogenic potential of radon. The possibility of radon having a causative effect on other cancers has been explored but not yet proven. One of the postulated mechanisms of carcinogenesis is DNA damage by alpha particles mediated by the production of reactive oxygen species. The latter are also thought to constitute one of the common mechanisms underlying the synergistic effect of radon and tobacco smoke. With an estimated 21,000 lung cancer deaths attributable to radon in the United States annually, the need for radon mitigation is well acknowledged. The Environmental Protection Agency (EPA) has established an indoor limit of 4 picocuries (pCi)/L, and various methods are available for indoor radon reduction when testing shows higher levels. Radon mitigation should accompany smoking cessation measures in lung cancer prevention efforts.
0 Communities
1 Members
0 Resources
9 MeSH Terms
A critical role for macrophages in promotion of urethane-induced lung carcinogenesis.
Zaynagetdinov R, Sherrill TP, Polosukhin VV, Han W, Ausborn JA, McLoed AG, McMahon FB, Gleaves LA, Degryse AL, Stathopoulos GT, Yull FE, Blackwell TS
(2011) J Immunol 187: 5703-11
MeSH Terms: Animals, Carcinogens, Cell Separation, Cell Transformation, Neoplastic, Female, Flow Cytometry, Immunohistochemistry, Lung Neoplasms, Macrophages, Male, Mice, Real-Time Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, Urethane
Show Abstract · Added January 20, 2014
Macrophages have established roles in tumor growth and metastasis, but information about their role in lung tumor promotion is limited. To assess the role of macrophages in lung tumorigenesis, we developed a method of minimally invasive, long-term macrophage depletion by repetitive intratracheal instillation of liposomal clodronate. Compared with controls treated with repetitive doses of PBS-containing liposomes, long-term macrophage depletion resulted in a marked reduction in tumor number and size at 4 mo after a single i.p. injection of the carcinogen urethane. After urethane treatment, lung macrophages developed increased M1 macrophage marker expression during the first 2-3 wk, followed by increased M2 marker expression by week 6. Using a strategy to reduce alveolar macrophages during tumor initiation and early promotion stages (weeks 1-2) or during late promotion and progression stages (weeks 4-16), we found significantly fewer and smaller lung tumors in both groups compared with controls. Late-stage macrophage depletion reduced VEGF expression and impaired vascular growth in tumors. In contrast, early-stage depletion of alveolar macrophages impaired urethane-induced NF-κB activation in the lungs and reduced the development of premalignant atypical adenomatous hyperplasia lesions at 6 wk after urethane injection. Together, these studies elucidate an important role for macrophages in lung tumor promotion and indicate that these cells have distinct roles during different stages of lung carcinogenesis.
3 Communities
2 Members
0 Resources
14 MeSH Terms
Deoxyguanosine forms a bis-adduct with E,E-muconaldehyde, an oxidative metabolite of benzene: implications for the carcinogenicity of benzene.
Harris CM, Stec DF, Christov PP, Kozekov ID, Rizzo CJ, Harris TM
(2011) Chem Res Toxicol 24: 1944-56
MeSH Terms: Aldehydes, Amino Acids, Benzene, Biotransformation, Carcinogens, Circular Dichroism, DNA, DNA Adducts, Deoxyguanosine, Environmental Pollution, Humans, Magnetic Resonance Spectroscopy, Nucleic Acid Conformation, Oxidation-Reduction, Peptides, Solutions, Spiro Compounds, Stereoisomerism
Show Abstract · Added March 7, 2014
Benzene is employed in large quantities in the chemical industry and is an ubiquitous contaminant in the environment. There is strong epidemiological evidence that benzene exposure induces hematopoietic malignancies, especially acute myeloid leukemia, in humans, but the chemical mechanisms remain obscure. E,E-Muconaldehyde is one of the products of metabolic oxidation of benzene. This paper explores the proposition that E,E-muconaldehyde is capable of forming Gua-Gua cross-links. If formed in DNA, the replication and repair of such cross-links might introduce structural defects that could be the origin of the carcinogenicity. We have investigated the reaction of E,E-muconaldehyde with dGuo and found that the reaction yields two pairs of interconverting diastereomers of a novel heptacyclic bis-adduct having a spiro ring system linking the two Gua residues. The structures of the four diastereomers have been established by NMR spectroscopy and their absolute configurations by comparison of CD spectra with those of model compounds having known configurations. The final two steps in the formation of the bis-nucleoside (5-ring → 6-ring → 7-ring) have significant reversibility, which is the basis for the observed epimerization. The 6-ring precursor was trapped from the equilibrating mixture by reduction with NaBH(4). The anti relationship of the two Gua residues in the heptacyclic bis-adduct precludes it from being formed in B DNA, but the 6-ring precursor could readily be accommodated as an interchain or intrachain cross-link. It should be possible to form similar cross-links of dCyt, dAdo, the ε-amino group of lysine, the imidazole NH of histidine, and N termini of peptides with the dGuo-muconaldehyde monoadduct.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Well-done meat intake and meat-derived mutagen exposures in relation to breast cancer risk: the Nashville Breast Health Study.
Fu Z, Deming SL, Fair AM, Shrubsole MJ, Wujcik DM, Shu XO, Kelley M, Zheng W
(2011) Breast Cancer Res Treat 129: 919-28
MeSH Terms: Adult, Aged, Breast Neoplasms, Carcinogens, Case-Control Studies, Cooking, Eating, Female, Humans, Meat, Middle Aged, Mutagens, Postmenopause, Premenopause, Quinoxalines, Regression Analysis, Risk Factors, Tennessee
Show Abstract · Added March 27, 2014
Previous studies of the association of meat intake and meat-derived mutagen exposure with breast cancer risk have produced inconsistent results. We evaluated this association in a population-based case-control study of incident breast cancer conducted in Nashville, Tennessee, United States, including 2,386 breast cancer cases and 1,703 healthy women controls. Telephone interviews were conducted to obtain information related to meat intake including amount, cooking methods, and doneness levels, as well as other known or hypothesized risk factors for breast cancer. Unconditional logistic regression was used to derive odds ratios (ORs) after adjusting for potential confounders. High intake of red meat was associated with a significantly elevated risk of breast cancer (P-trend < 0.001). The association was particularly strong for high intake of well-done red meat (P-trend < 0.001), with an adjusted OR of 1.5 (95% CI = 1.3-1.9) for the highest versus the lowest quartile. Associations between red meat and breast cancer risk were slightly stronger for postmenopausal women than for premenopausal women. Meat-derived mutagens such as 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline, were significantly associated with increased breast cancer risk among postmenopausal women only (P-trend = 0.002 and 0.003, respectively). The results from this study provide strong support for the hypotheses that high red meat intake and meat-derived mutagen exposure may be associated with an increase in breast cancer risk.
0 Communities
2 Members
0 Resources
18 MeSH Terms