Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 11 to 20 of 15112

Publication Record

Connections

α-Difluoromethylornithine reduces gastric carcinogenesis by causing mutations in .
Sierra JC, Suarez G, Piazuelo MB, Luis PB, Baker DR, Romero-Gallo J, Barry DP, Schneider C, Morgan DR, Peek RM, Gobert AP, Wilson KT
(2019) Proc Natl Acad Sci U S A 116: 5077-5085
MeSH Terms: Animals, Bacterial Proteins, Carcinogenesis, DNA Damage, Eflornithine, Gene Deletion, Gene Rearrangement, Gerbillinae, Helicobacter pylori, Male, Mutation, Oxidative Stress, RNA, Messenger, Stomach Neoplasms, Virulence
Show Abstract · Added February 26, 2019
Infection by is the primary cause of gastric adenocarcinoma. The most potent virulence factor is cytotoxin-associated gene A (CagA), which is translocated by a type 4 secretion system (T4SS) into gastric epithelial cells and activates oncogenic signaling pathways. The gene encodes for a key component of the T4SS and can undergo gene rearrangements. We have shown that the cancer chemopreventive agent α-difluoromethylornithine (DFMO), known to inhibit the enzyme ornithine decarboxylase, reduces -mediated gastric cancer incidence in Mongolian gerbils. In the present study, we questioned whether DFMO might directly affect pathogenicity. We show that output strains isolated from gerbils treated with DFMO exhibit reduced ability to translocate CagA in gastric epithelial cells. Further, we frequently detected genomic modifications in the middle repeat region of the gene of output strains from DFMO-treated animals, which were associated with alterations in the CagY protein. Gerbils did not develop carcinoma when infected with a DFMO output strain containing rearranged or the parental strain in which the wild-type was replaced by with DFMO-induced rearrangements. Lastly, we demonstrate that in vitro treatment of by DFMO induces oxidative DNA damage, expression of the DNA repair enzyme MutS2, and mutations in , demonstrating that DFMO directly affects genomic stability. Deletion of abrogated the ability of DFMO to induce rearrangements directly. In conclusion, DFMO-induced oxidative stress in leads to genomic alterations and attenuates virulence.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Assessing Acinetobacter baumannii Virulence and Persistence in a Murine Model of Lung Infection.
Palmer LD, Green ER, Sheldon JR, Skaar EP
(2019) Methods Mol Biol 1946: 289-305
MeSH Terms: Acinetobacter Infections, Acinetobacter baumannii, Acute Disease, Animals, Bacterial Load, Biopsy, Disease Models, Animal, Flow Cytometry, Immunity, Immunohistochemistry, Mice, Pneumonia, Bacterial, Virulence
Show Abstract · Added April 2, 2019
Acinetobacter baumannii is a Gram-negative opportunistic pathogen and a leading cause of ventilator-associated pneumonia. Murine models of A. baumannii lung infection allow researchers to experimentally assess A. baumannii virulence and host response. Intranasal administration of A. baumannii models acute lung infection. This chapter describes the methods to test A. baumannii virulence in a murine model of lung infection, including assessing the competitive index of a bacterial mutant and the associated inflammatory responses.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Myosin IIA drives membrane bleb retraction.
Taneja N, Burnette DT
(2019) Mol Biol Cell 30: 1051-1059
MeSH Terms: Actins, Animals, Blister, COS Cells, Cell Membrane, Cell Membrane Structures, Cell Movement, Cell Surface Extensions, Cercopithecus aethiops, Cytokinesis, Cytoplasm, Cytoskeletal Proteins, HeLa Cells, Humans, Myosin Type II, Nerve Tissue Proteins, Nonmuscle Myosin Type IIA, Nonmuscle Myosin Type IIB
Show Abstract · Added March 27, 2019
Membrane blebs are specialized cellular protrusions that play diverse roles in processes such as cell division and cell migration. Blebbing can be divided into three distinct phases: bleb nucleation, bleb growth, and bleb retraction. Following nucleation and bleb growth, the actin cortex, comprising actin, cross-linking proteins, and nonmuscle myosin II (MII), begins to reassemble on the membrane. MII then drives the final phase, bleb retraction, which results in reintegration of the bleb into the cellular cortex. There are three MII paralogues with distinct biophysical properties expressed in mammalian cells: MIIA, MIIB, and MIIC. Here we show that MIIA specifically drives bleb retraction during cytokinesis. The motor domain and regulation of the nonhelical tailpiece of MIIA both contribute to its ability to drive bleb retraction. These experiments have also revealed a relationship between faster turnover of MIIA at the cortex and its ability to drive bleb retraction.
0 Communities
1 Members
0 Resources
18 MeSH Terms
A Phenome-Wide Association Study Uncovers a Pathological Role of Coagulation Factor X during Infection.
Choby JE, Monteith AJ, Himmel LE, Margaritis P, Shirey-Rice JK, Pruijssers A, Jerome RN, Pulley J, Skaar EP
(2019) Infect Immun 87:
MeSH Terms: Acinetobacter Infections, Acinetobacter baumannii, Animals, Disease Models, Animal, Factor X, Host-Pathogen Interactions, Humans, Mice, Mice, Inbred C57BL, Phenotype, Polymorphism, Genetic
Show Abstract · Added April 7, 2019
Coagulation and inflammation are interconnected, suggesting that coagulation plays a key role in the inflammatory response to pathogens. A phenome-wide association study (PheWAS) was used to identify clinical phenotypes of patients with a polymorphism in coagulation factor X. Patients with this single nucleotide polymorphism (SNP) were more likely to be hospitalized with hemostatic and infection-related disorders, suggesting that factor X contributes to the immune response to infection. To investigate this, we modeled infections by human pathogens in a mouse model of factor X deficiency. Factor X-deficient mice were protected from systemic infection, suggesting that factor X plays a role in the immune response to Factor X deficiency was associated with reduced cytokine and chemokine production and alterations in immune cell population during infection: factor X-deficient mice demonstrated increased abundance of neutrophils, macrophages, and effector T cells. Together, these results suggest that factor X activity is associated with an inefficient immune response and contributes to the pathology of infection.
Copyright © 2019 American Society for Microbiology.
0 Communities
1 Members
0 Resources
11 MeSH Terms
iNKT Cell Activation Exacerbates the Development of Huntington's Disease in R6/2 Transgenic Mice.
Park HJ, Lee SW, Im W, Kim M, Van Kaer L, Hong S
(2019) Mediators Inflamm 2019: 3540974
MeSH Terms: Animals, Brain, Cytokines, Disease Models, Animal, Disease Progression, Galactosylceramides, Genotype, Huntington Disease, Leukocytes, Lymphocyte Activation, Mice, Mice, Knockout, Natural Killer T-Cells
Show Abstract · Added March 26, 2019
Huntington's disease (HD) is an inherited neurodegenerative disorder which is caused by a mutation of the huntingtin (HTT) gene. Although the pathogenesis of HD has been associated with inflammatory responses, if and how the immune system contributes to the onset of HD is largely unknown. Invariant natural killer T (iNKT) cells are a group of innate-like regulatory T lymphocytes that can rapidly produce various cytokines such as IFN and IL4 upon stimulation with the glycolipid -galactosylceramide (-GalCer). By employing both R6/2 Tg mice (murine HD model) and J18 KO mice (deficient in iNKT cells), we investigated whether alterations of iNKT cells affect the development of HD in R6/2 Tg mice. We found that J18 KO R6/2 Tg mice showed disease progression comparable to R6/2 Tg mice, indicating that the absence of iNKT cells did not have any significant effects on HD development. However, repeated activation of iNKT cells with -GalCer facilitated HD progression in R6/2 Tg mice, and this was associated with increased infiltration of iNKT cells in the brain. Taken together, our results demonstrate that repeated -GalCer treatment of R6/2 Tg mice accelerates HD progression, suggesting that immune activation can affect the severity of HD pathogenesis.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Use of chemical probes to explore the toxicological potential of the K/Cl cotransporter (KCC) as a novel insecticide target to control the primary vector of dengue and Zika virus, Aedes aegypti.
Prael FJ, Chen R, Li Z, Reed CW, Lindsley CW, Weaver CD, Swale DR
(2018) Pestic Biochem Physiol 151: 10-17
MeSH Terms: Aedes, Animals, Dengue, Drosophila, Insecticides, Mammals, Mosquito Vectors, Nervous System, Symporters, Zika Virus
Show Abstract · Added April 10, 2019
The majority of commercialized insecticides target the insect nervous system and therefore, neural proteins are well-validated targets for insecticide development. Considering that only a few neural targets are exploited for insecticidal action and the development of insecticide resistance has reduced the efficacy of current insecticidal classes, we sought to test the toxicological potential of the potassium-chloride cotransporter (KCC). In mammals, KCC proteins have seminal roles in shaping GABAergic signaling and inhibitory neurotransmission, thus ion transport through KCC is critical for proper neurotransmission. Therefore, we hypothesized that mosquito KCC represents a putative insecticide target site and that pharmacological inhibition of KCC constructs in Aedes aegypti will be lethal. To test this hypothesis, we developed a robust, cell-based fluorescence assay that enables in vitro characterization of small-molecules against Ae. aegypti KCC and performed a proof-of-concept study employing well characterized mammalian KCC modulators to determine the toxicological potential of Ae. aegypti KCC. The selective inhibitor of mammalian KCC, termed VU0463271, was found to be a potent inhibitor Ae. aegypti KCC and microinjection induced lethality in a concentration-dependent manner to susceptible and pyrethroid resistant strains. Importantly, an analog of VU0463271 was shown to be >40-fold less potent and did not induce toxicity, suggesting that the observed physiological effects and mortality are likely due to KCC inhibition. This proof-of-concept study suggests that Ae. aegypti KCC represents a putative target site for mosquitocide design that can mitigate the current mechanisms of insecticide resistance.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Treating Nonalcoholic Fatty Liver Disease From the Outside In?
Flynn CR
(2019) Cell Mol Gastroenterol Hepatol 7: 682-683
MeSH Terms: Animals, Hepatocytes, Intracellular Signaling Peptides and Proteins, Mice, Non-alcoholic Fatty Liver Disease, Oligonucleotides, Antisense, Protein-Serine-Threonine Kinases
Added April 15, 2019
0 Communities
1 Members
0 Resources
7 MeSH Terms
Structural basis of a potent human monoclonal antibody against Zika virus targeting a quaternary epitope.
Long F, Doyle M, Fernandez E, Miller AS, Klose T, Sevvana M, Bryan A, Davidson E, Doranz BJ, Kuhn RJ, Diamond MS, Crowe JE, Rossmann MG
(2019) Proc Natl Acad Sci U S A 116: 1591-1596
MeSH Terms: Animals, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Cryoelectron Microscopy, Disease Models, Animal, Epitopes, Humans, Male, Mice, Mice, Inbred C57BL, Vaccination, Viral Envelope Proteins, Zika Virus, Zika Virus Infection
Show Abstract · Added March 31, 2019
Zika virus (ZIKV) is a major human pathogen and member of the genus in the Flaviviridae family. In contrast to most other insect-transmitted flaviviruses, ZIKV also can be transmitted sexually and from mother to fetus in humans. During recent outbreaks, ZIKV infections have been linked to microcephaly, congenital disease, and Guillain-Barré syndrome. Neutralizing antibodies have potential as therapeutic agents. We report here a 4-Å-resolution cryo-electron microscopy structure of the ZIKV virion in complex with Fab fragments of the potently neutralizing human monoclonal antibody ZIKV-195. The footprint of the ZIKV-195 Fab fragment expands across two adjacent envelope (E) protein protomers. ZIKV neutralization by this antibody is presumably accomplished by cross-linking the E proteins, which likely prevents formation of E protein trimers required for fusion of the viral and cellular membranes. A single dose of ZIKV-195 administered 5 days after virus inoculation showed marked protection against lethality in a stringent mouse model of infection.
0 Communities
1 Members
0 Resources
MeSH Terms
Nonsteroidal Anti-inflammatory Drugs Alter the Microbiota and Exacerbate Colitis while Dysregulating the Inflammatory Response.
Maseda D, Zackular JP, Trindade B, Kirk L, Roxas JL, Rogers LM, Washington MK, Du L, Koyama T, Viswanathan VK, Vedantam G, Schloss PD, Crofford LJ, Skaar EP, Aronoff DM
(2019) MBio 10:
MeSH Terms: Animals, Anti-Inflammatory Agents, Non-Steroidal, CD4-Positive T-Lymphocytes, Clostridium Infections, Gastrointestinal Microbiome, Indomethacin, Intestinal Mucosa, Mice, Neutrophils, Prostaglandins, Survival Analysis
Show Abstract · Added April 7, 2019
infection (CDI) is a major public health threat worldwide. The use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with enhanced susceptibility to and severity of CDI; however, the mechanisms driving this phenomenon have not been elucidated. NSAIDs alter prostaglandin (PG) metabolism by inhibiting cyclooxygenase (COX) enzymes. Here, we found that treatment with the NSAID indomethacin prior to infection altered the microbiota and dramatically increased mortality and the intestinal pathology associated with CDI in mice. We demonstrated that in -infected animals, indomethacin treatment led to PG deregulation, an altered proinflammatory transcriptional and protein profile, and perturbed epithelial cell junctions. These effects were paralleled by increased recruitment of intestinal neutrophils and CD4 cells and also by a perturbation of the gut microbiota. Together, these data implicate NSAIDs in the disruption of protective COX-mediated PG production during CDI, resulting in altered epithelial integrity and associated immune responses. infection (CDI) is a spore-forming anaerobic bacterium and leading cause of antibiotic-associated colitis. Epidemiological data suggest that use of nonsteroidal anti-inflammatory drugs (NSAIDs) increases the risk for CDI in humans, a potentially important observation given the widespread use of NSAIDs. Prior studies in rodent models of CDI found that NSAID exposure following infection increases the severity of CDI, but mechanisms to explain this are lacking. Here we present new data from a mouse model of antibiotic-associated CDI suggesting that brief NSAID exposure prior to CDI increases the severity of the infectious colitis. These data shed new light on potential mechanisms linking NSAID use to worsened CDI, including drug-induced disturbances to the gut microbiome and colonic epithelial integrity. Studies were limited to a single NSAID (indomethacin), so future studies are needed to assess the generalizability of our findings and to establish a direct link to the human condition.
Copyright © 2019 Maseda et al.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Neurog3-Independent Methylation Is the Earliest Detectable Mark Distinguishing Pancreatic Progenitor Identity.
Liu J, Banerjee A, Herring CA, Attalla J, Hu R, Xu Y, Shao Q, Simmons AJ, Dadi PK, Wang S, Jacobson DA, Liu B, Hodges E, Lau KS, Gu G
(2019) Dev Cell 48: 49-63.e7
MeSH Terms: Animals, Basic Helix-Loop-Helix Transcription Factors, Cell Differentiation, Cell Lineage, Endocrine Cells, Homeodomain Proteins, Insulin-Secreting Cells, Islets of Langerhans, Mice, Nerve Tissue Proteins, Organogenesis, Pancreas, Transcription Factors
Show Abstract · Added February 6, 2019
In the developing pancreas, transient Neurog3-expressing progenitors give rise to four major islet cell types: α, β, δ, and γ; when and how the Neurog3 cells choose cell fate is unknown. Using single-cell RNA-seq, trajectory analysis, and combinatorial lineage tracing, we showed here that the Neurog3 cells co-expressing Myt1 (i.e., Myt1Neurog3) were biased toward β cell fate, while those not simultaneously expressing Myt1 (Myt1Neurog3) favored α fate. Myt1 manipulation only marginally affected α versus β cell specification, suggesting Myt1 as a marker but not determinant for islet-cell-type specification. The Myt1Neurog3 cells displayed higher Dnmt1 expression and enhancer methylation at Arx, an α-fate-promoting gene. Inhibiting Dnmts in pancreatic progenitors promoted α cell specification, while Dnmt1 overexpression or Arx enhancer hypermethylation favored β cell production. Moreover, the pancreatic progenitors contained distinct Arx enhancer methylation states without transcriptionally definable sub-populations, a phenotype independent of Neurog3 activity. These data suggest that Neurog3-independent methylation on fate-determining gene enhancers specifies distinct endocrine-cell programs.
Published by Elsevier Inc.
1 Communities
1 Members
0 Resources
13 MeSH Terms