Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 141 to 144 of 144

Publication Record

Connections

Glucoregulation during rest and exercise in depancreatized dogs: role of the acute presence of insulin.
Wasserman DH, Bupp JL, Johnson JL, Bracy D, Lacy DB
(1992) Am J Physiol 262: E574-82
MeSH Terms: Animals, Arteries, Blood Glucose, Catecholamines, Dogs, Fatty Acids, Nonesterified, Glucagon, Glucose, Glycerol, Hydrocortisone, Insulin, Kinetics, Pancreatectomy, Physical Exertion, Rest
Show Abstract · Added August 19, 2014
To determine the effects of the presence of insulin in poorly controlled diabetes, depancreatized (PX) dogs (n = 5) were studied during rest and 150 min of exercise in paired experiments in which saline alone was infused (IDEF) and in which insulin was replaced intraportally (200 microU.kg-1.min-1) with glucose clamped at the levels in IDEF (IR+G). PX dogs (n = 4) were also studied with insulin, but glucose was allowed to fall (IR). Insulin was not detectable, 6 +/- 1 and 6 +/- 2 microU/ml in IDEF, IR+G, and IR. Plasma glucose was 470 +/- 47, 480 +/- 48, and 372 +/- 35 mg/dl at rest in IDEF, IR+G, and IR, respectively. Levels were unchanged with exercise in IDEF and IR+G, but fell by 139 +/- 13 mg/dl in IR. Basal glucose rate of appearance (Ra) was 7.0 +/- 0.9, 1.3 +/- 1.1, and 6.0 +/- 0.7 mg.kg-1.min-1 in IDEF, IR+G, and IR, respectively. Exercise elicited a rise in Ra in only IDEF. The rises in Rd and metabolic clearance rate in IDEF were reduced (delta 2.6 +/- 0.7 and delta 0.8 +/- 0.3 ml.kg-1.min-1 at 150 min) compared with IR+G (delta 5.3 +/- 1.9 and delta 1.7 +/- 0.2 ml.kg-1.min-1 at 150 min) and IR (delta 3.7 +/- 1.2 and delta 2.4 +/- 0.8 ml.kg-1.min-1). The insulin sensitivity of glucose utilization (Rd) was elevated by approximately 75% at 150 min. Basal glycerol was similar in IDEF and IR but was reduced by approximately 70% in IR+G. Glycerol rose similarly with exercise in IDEF and IR.(ABSTRACT TRUNCATED AT 250 WORDS)
0 Communities
1 Members
0 Resources
15 MeSH Terms
Metabolic regulation in peripheral tissues and transition to increased gluconeogenic mode during prolonged exercise.
Wasserman DH, Lacy DB, Bracy D, Williams PE
(1992) Am J Physiol 263: E345-54
MeSH Terms: Amino Acids, Animals, Arteries, Biological Availability, Blood Glucose, Carbon Dioxide, Dogs, Fatty Acids, Nonesterified, Glucose, Hindlimb, Lactates, Lactic Acid, Lipid Metabolism, Liver, Oxygen, Physical Exertion, Pyruvates, Time Factors
Show Abstract · Added August 19, 2014
To assess the means by which peripheral metabolism facilitates the transition to a gluconeogenic state, dogs were studied during 150 min of moderate treadmill exercise. Metabolism in the working hindlimb was assessed with arteriovenous difference and isotopic techniques (n = 9). In a separate group (n = 6), hepatic metabolism was assessed using arteriovenous differences. Limb glucose uptake (LGU) and oxidation (GOX) rose from 33 +/- 10 and 5 +/- 2 to 101 +/- 20 and 54 +/- 15 mumol/min at 10 min of exercise. LGU continued to rise (151 +/- 21 mumol/min at 150 min), while GOX declined. Nonoxidative glucose metabolism (GNOX) was 28 +/- 10 mumol/min at rest and 47 +/- 24 and 108 +/- 16 mumol/min at 10 and 150 min of exercise. Limb nonglycemic (predominantly glycogen) pyruvate formation rose from 52 +/- 22 to 198 +/- 54 and 242 +/- 74 mumol/min at 10 and 150 min of exercise. The gradual increase in GNOX and the high glycogenolytic rate were paralleled by accelerated lactate, pyruvate, and glutamine releases. Limb glycerol release rose promptly and remained elevated during exercise. Plasma nonesterified fatty acids (NEFAs) rose gradually and paralleled the gradual rise in GNOX (r = 0.93). The resulting rise in hepatic NEFA delivery was highly correlated to hepatic O2 uptake (r = 0.87), hepatic vein lactate-to-pyruvate ratio (r = 0.90), and intrahepatic gluconeogenic efficiency (r = 0.96). In summary, during exercise, 1) the primary fate of the added glucose consumed by the working limb is initially oxidation, but becomes GNOX as exercise duration progresses; 2) glycogenolysis rises promptly, but attains its highest rate at the end of exercise; 3) the late increases in GNOX and glycogenolysis relate to an increased gluconeogenic precursor release from the working limb; 4) although lipolysis increases promptly and is sustained, circulating NEFAs rise only gradually; and 5) the gradual rise in plasma NEFAs is highly correlated to the shift from GOX to GNOX and the adjustments in hepatic metabolism that are necessary for the full gluconeogenic response.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Ultrastructural localization of peroxidase in atherosclerotic lesions of pigeons.
Taylor RG, Jerome WG, Lewis JC
(1992) Exp Mol Pathol 57: 167-79
MeSH Terms: Animals, Aorta, Arteries, Arteriosclerosis, Cell Nucleus, Columbidae, Coronary Vessels, Endoplasmic Reticulum, Endothelium, Vascular, Histocytochemistry, Lipids, Microscopy, Electron, Muscle, Smooth, Vascular, Peroxidase
Show Abstract · Added December 10, 2013
Atherosclerotic lesions are known to have metabolic alterations which are associated with progressive lipid accumulation. Among the changes, lysosomal enzyme activity has been extensively characterized and at the ultrastructural level has been correlated with the amount of foam cell lipid. In a fashion paralleling lysosomal change, artery wall peroxidase activity is also altered during disease progression. The present study focuses upon the ultrastructural localization of peroxidase activity in atherosclerotic lesions of the aorta and coronary arteries from White Carneau pigeons fed a cholesterol-supplemented (0.3%) diet for 3 years. This resulted in fibrous lesions, rich in smooth muscle cells. The birds were necropsied by perfusion fixation, and peroxidase cytochemistry was carried out using the diaminobenzidine reaction. Peroxidase activity was found within endothelial cells and smooth muscle cells in both the media and intima, but cytochemically demonstrable activity was not found in macrophage foam cells. Peroxidase was localized within the nuclear envelope and endoplasmic reticulum, especially within cells that had lipid inclusions. The degree of peroxidase positivity varied within and among the arteries. In nonlesion regions of the aorta 20% of medial smooth muscle cells was peroxidase positive; the value for coronary artery smooth muscle cells was less. The peroxidase activity within aortic lesions was increased with 44% of intimal smooth muscle cells being positive. Notably, 85-90% of the lipid-containing intimal smooth muscle cells were positive. In contrast, intimal smooth muscle cells in the coronary artery lacked peroxidase reaction product, even in cells containing lipid. We conclude from these studies that aortic lesions contain a cytochemically differentiated subset of lipid-containing, peroxidase-positive smooth muscle cells; but coronary lesions lack a comparable subset of smooth muscle cells.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Coronary arterial smooth muscle contraction by a substance released from platelets: evidence that it is thromboxane A2.
Ellis EF, Oelz O, Roberts LJ, Payne NA, Sweetman BJ, Nies AS, Oates JA
(1976) Science 193: 1135-7
MeSH Terms: Arteries, Blood Platelets, Coronary Circulation, Humans, Hydroxy Acids, Male, Muscle Contraction, Muscle, Smooth, Platelet Aggregation, Prostaglandins, Pyrans, Vasoconstrictor Agents
Show Abstract · Added December 10, 2013
When human platelets are aggregated by thrombin, material is released that rapidly contracts strips of spirally cut porcine coronary artery. Prevention of the contraction by indomethacin suggested mediation by a prostaglandin. The contraction produced by aggregating platelets was unlike those produced by prostaglandins E2, F2alpha, G2, or H2, but resembled that evoked by thromboxane A2, which is formed by platelets during aggregation.
0 Communities
1 Members
0 Resources
12 MeSH Terms