Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 832

Publication Record

Connections

Abatacept for Severe Immune Checkpoint Inhibitor-Associated Myocarditis.
Salem JE, Allenbach Y, Vozy A, Brechot N, Johnson DB, Moslehi JJ, Kerneis M
(2019) N Engl J Med 380: 2377-2379
MeSH Terms: Abatacept, Aged, Antineoplastic Agents, Immunological, Female, Humans, Immunosuppressive Agents, Lung Neoplasms, Myocarditis, Myositis, Nivolumab, Programmed Cell Death 1 Receptor
Added November 12, 2019
0 Communities
1 Members
0 Resources
MeSH Terms
Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer.
Formisano L, Lu Y, Servetto A, Hanker AB, Jansen VM, Bauer JA, Sudhan DR, Guerrero-Zotano AL, Croessmann S, Guo Y, Ericsson PG, Lee KM, Nixon MJ, Schwarz LJ, Sanders ME, Dugger TC, Cruz MR, Behdad A, Cristofanilli M, Bardia A, O'Shaughnessy J, Nagy RJ, Lanman RB, Solovieff N, He W, Miller M, Su F, Shyr Y, Mayer IA, Balko JM, Arteaga CL
(2019) Nat Commun 10: 1373
MeSH Terms: Aminopyridines, Animals, Antineoplastic Agents, Hormonal, Antineoplastic Combined Chemotherapy Protocols, Breast Neoplasms, Circulating Tumor DNA, Cyclin D1, Cyclin-Dependent Kinase 4, Cyclin-Dependent Kinase 6, Drug Resistance, Neoplasm, Female, Fulvestrant, High-Throughput Nucleotide Sequencing, Humans, MCF-7 Cells, Mice, Mutation, Naphthalenes, Piperazines, Progression-Free Survival, Proportional Hazards Models, Protein Kinase Inhibitors, Purines, Pyrazoles, Pyridines, Quinolines, Quinoxalines, Receptor, Fibroblast Growth Factor, Type 1, Receptor, Fibroblast Growth Factor, Type 2, Receptors, Estrogen, Signal Transduction, Xenograft Model Antitumor Assays
Show Abstract · Added April 2, 2019
Using an ORF kinome screen in MCF-7 cells treated with the CDK4/6 inhibitor ribociclib plus fulvestrant, we identified FGFR1 as a mechanism of drug resistance. FGFR1-amplified/ER+ breast cancer cells and MCF-7 cells transduced with FGFR1 were resistant to fulvestrant ± ribociclib or palbociclib. This resistance was abrogated by treatment with the FGFR tyrosine kinase inhibitor (TKI) lucitanib. Addition of the FGFR TKI erdafitinib to palbociclib/fulvestrant induced complete responses of FGFR1-amplified/ER+ patient-derived-xenografts. Next generation sequencing of circulating tumor DNA (ctDNA) in 34 patients after progression on CDK4/6 inhibitors identified FGFR1/2 amplification or activating mutations in 14/34 (41%) post-progression specimens. Finally, ctDNA from patients enrolled in MONALEESA-2, the registration trial of ribociclib, showed that patients with FGFR1 amplification exhibited a shorter progression-free survival compared to patients with wild type FGFR1. Thus, we propose breast cancers with FGFR pathway alterations should be considered for trials using combinations of ER, CDK4/6 and FGFR antagonists.
0 Communities
1 Members
0 Resources
32 MeSH Terms
Rabbit Model of Intra-Arterial Chemotherapy Toxicity Demonstrates Retinopathy and Vasculopathy Related to Drug and Dose, Not Procedure or Approach.
Daniels AB, Froehler MT, Nunnally AH, Pierce JM, Bozic I, Stone CA, Santapuram PR, Tao YK, Boyd KL, Himmel LE, Chen SC, Du L, Friedman DL, Richmond A
(2019) Invest Ophthalmol Vis Sci 60: 954-964
MeSH Terms: Animals, Antineoplastic Agents, Antineoplastic Agents, Alkylating, Carboplatin, Dose-Response Relationship, Drug, Electroretinography, Female, Fluorescein Angiography, Humans, Infant, Infusions, Intra-Arterial, Male, Melphalan, Models, Animal, Ophthalmic Artery, Rabbits, Retina, Retinal Diseases, Retinal Neoplasms, Retinal Vessels, Retinoblastoma, Retrospective Studies, Tomography, Optical Coherence
Show Abstract · Added July 29, 2019
Purpose - To use our intra-arterial chemotherapy (IAC) rabbit model to assess the impact of IAC procedure, drug, dose, and choice of technique on ocular structure and function, to study the nature and etiology of IAC toxicity, and to compare to observations in patients.
Methods - Rabbits received IAC melphalan (0.4-0.8 mg/kg), carboplatin (25-50 mg), or saline, either by direct ophthalmic artery cannulation, or with a technique emulating nonocclusion. Ocular structure/function were assessed with examination, electroretinography (ERG), fundus photography, fluorescein angiography, optical coherence tomography (OCT), and OCT angiography, prior to and 5 to 6 weeks after IAC. Blood counts were obtained weekly. We reviewed our last 50 IAC treatments in patients for evidence of ocular or systemic complications.
Results - No toxicity was seen in the saline control group. With standard (0.4 mg/kg) melphalan, no vascular/microvascular abnormalities were seen with either technique. However, severe microvascular pruning and arteriolar occlusions were seen occasionally at 0.8 mg/kg doses. ERG reductions were dose-dependent. Histology showed melphalan dose-dependent degeneration in all retinal layers, restricted geographically to areas of greatest vascular density. Carboplatin caused massive edema of ocular/periocular structures. IAC patients experienced occasional periocular swelling/rash, and only rarely experienced retinopathy or vascular events/hemorrhage in eyes treated multiple times with triple (melphalan/carboplatin/topotecan) therapy. Transient neutropenia occurred after 46% of IAC procedures, generally after triple therapy.
Conclusions - IAC toxicity appears to be related to the specific drug being used and is dose-dependent, rather than related to the IAC procedure itself or the specific technique selected. These rabbit findings are corroborated by our clinical findings in patients.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study.
Salem JE, Manouchehri A, Moey M, Lebrun-Vignes B, Bastarache L, Pariente A, Gobert A, Spano JP, Balko JM, Bonaca MP, Roden DM, Johnson DB, Moslehi JJ
(2018) Lancet Oncol 19: 1579-1589
MeSH Terms: Adult, Adverse Drug Reaction Reporting Systems, Aged, Aged, 80 and over, Antineoplastic Agents, Immunological, Bayes Theorem, Cardiotoxicity, Cardiovascular Diseases, Databases, Factual, Female, Humans, Immunotherapy, Male, Middle Aged, Pharmacovigilance, Retrospective Studies, Risk Assessment, Risk Factors, Time Factors
Show Abstract · Added December 13, 2018
BACKGROUND - Immune checkpoint inhibitors (ICIs) have substantially improved clinical outcomes in multiple cancer types and are increasingly being used in early disease settings and in combinations of different immunotherapies. However, ICIs can also cause severe or fatal immune-related adverse-events (irAEs). We aimed to identify and characterise cardiovascular irAEs that are significantly associated with ICIs.
METHODS - In this observational, retrospective, pharmacovigilance study, we used VigiBase, WHO's global database of individual case safety reports, to compare cardiovascular adverse event reporting in patients who received ICIs (ICI subgroup) with this reporting in the full database. This study included all cardiovascular irAEs classified by group queries according to the Medical Dictionary for Regulatory Activities, between inception on Nov 14, 1967, and Jan 2, 2018. We evaluated the association between ICIs and cardiovascular adverse events using the reporting odds ratio (ROR) and the information component (IC). IC is an indicator value for disproportionate Bayesian reporting that compares observed and expected values to find associations between drugs and adverse events. IC is the lower end of the IC 95% credibility interval, and an IC value of more than zero is deemed significant. This study is registered with ClinicalTrials.gov, number NCT03387540.
FINDINGS - We identified 31 321 adverse events reported in patients who received ICIs and 16 343 451 adverse events reported in patients treated with any drugs (full database) in VigiBase. Compared with the full database, ICI treatment was associated with higher reporting of myocarditis (5515 reports for the full database vs 122 for ICIs, ROR 11·21 [95% CI 9·36-13·43]; IC 3·20), pericardial diseases (12 800 vs 95, 3·80 [3·08-4·62]; IC 1·63), and vasculitis (33 289 vs 82, 1·56 [1·25-1·94]; IC 0·03), including temporal arteritis (696 vs 18, 12·99 [8·12-20·77]; IC 2·59) and polymyalgia rheumatica (1709 vs 16, 5·13 [3·13-8·40]; IC 1·33). Pericardial diseases were reported more often in patients with lung cancer (49 [56%] of 87 patients), whereas myocarditis (42 [41%] of 103 patients) and vasculitis (42 [60%] of 70 patients) were more commonly reported in patients with melanoma (χ test for overall subgroup comparison, p<0·0001). Vision was impaired in five (28%) of 18 patients with temporal arteritis. Cardiovascular irAEs were severe in the majority of cases (>80%), with death occurring in 61 (50%) of 122 myocarditis cases, 20 (21%) of 95 pericardial disease cases, and five (6%) of 82 vasculitis cases (χ test for overall comparison between pericardial diseases, myocarditis, and vasculitis, p<0·0001).
INTERPRETATION - Treatment with ICIs can lead to severe and disabling inflammatory cardiovascular irAEs soon after commencement of therapy. In addition to life-threatening myocarditis, these toxicities include pericardial diseases and temporal arteritis with a risk of blindness. These events should be considered in patient care and in combination clinical trial designs (ie, combinations of different immunotherapies as well as immunotherapies and chemotherapy).
FUNDING - The Cancer Institut Thématique Multi-Organisme of the French National Alliance for Life and Health Sciences (AVIESAN) Plan Cancer 2014-2019; US National Cancer Institute, National Institutes of Health; the James C. Bradford Jr. Melanoma Fund; and the Melanoma Research Foundation.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Immune Checkpoint Inhibitor-Associated Myositis.
Anquetil C, Salem JE, Lebrun-Vignes B, Johnson DB, Mammen AL, Stenzel W, Léonard-Louis S, Benveniste O, Moslehi JJ, Allenbach Y
(2018) Circulation 138: 743-745
MeSH Terms: Adult, Adverse Drug Reaction Reporting Systems, Aged, Aged, 80 and over, Antineoplastic Agents, Immunological, Databases, Factual, Female, Humans, Immunotherapy, Male, Middle Aged, Myositis, Pharmacovigilance, Prognosis, Risk Assessment, Risk Factors, Time Factors
Added December 13, 2018
0 Communities
1 Members
0 Resources
17 MeSH Terms
Light-activatable cannabinoid prodrug for combined and target-specific photodynamic and cannabinoid therapy.
Ling X, Zhang S, Liu Y, Bai M
(2018) J Biomed Opt 23: 1-9
MeSH Terms: Animals, Antineoplastic Agents, Cannabinoids, Cell Line, Tumor, Cell Survival, HEK293 Cells, Humans, Indoles, Mice, Organosilicon Compounds, Photochemotherapy, Photosensitizing Agents, Prodrugs, Reactive Oxygen Species
Show Abstract · Added April 2, 2019
Cannabinoids are emerging as promising antitumor drugs. However, complete tumor eradication solely by cannabinoid therapy remains challenging. In this study, we developed a far-red light activatable cannabinoid prodrug, which allows for tumor-specific and combinatory cannabinoid and photodynamic therapy. This prodrug consists of a phthalocyanine photosensitizer (PS), reactive oxygen species (ROS)-sensitive linker, and cannabinoid. It targets the type-2 cannabinoid receptor (CB2R) overexpressed in various types of cancers. Upon the 690-nm light irradiation, the PS produces cytotoxic ROS, which simultaneously cleaves the ROS-sensitive linker and subsequently releases the cannabinoid drug. We found that this unique multifunctional prodrug design offered dramatically improved therapeutic efficacy, and therefore provided a new strategy for targeted, controlled, and effective antitumor cannabinoid therapy.
(2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
0 Communities
1 Members
0 Resources
14 MeSH Terms
Immune checkpoint inhibitors and cardiovascular toxicity.
Lyon AR, Yousaf N, Battisti NML, Moslehi J, Larkin J
(2018) Lancet Oncol 19: e447-e458
MeSH Terms: Antineoplastic Agents, Immunological, Cardiotoxicity, Heart, Heart Diseases, Humans, Neoplasms, Risk Assessment, Risk Factors, Treatment Outcome
Show Abstract · Added October 1, 2018
Immune checkpoint inhibitors are a new class of anticancer therapies that amplify T-cell-mediated immune responses against cancer cells. Immune checkpoint inhibitors have shown important benefits in phase 3 trials, and several agents have been approved for specific malignancies. Although adverse events from immune checkpoint inhibitors are a common occurrence, cardiotoxic effects are uncommon, but are often serious complications with a relatively high mortality. Most cardiotoxic effects appear to be inflammatory in nature. Clinical assessment of a combination of biomarkers, electrocardiography, cardiac imaging, and endomyocardial biopsy can be used to confirm a possible diagnosis. In this Review, we discuss the epidemiology of immune checkpoint inhibitor-mediated cardiotoxic effects, as well as their clinical presentation, subtypes, risk factors, pathophysiology, and clinical management, including the introduction of a new surveillance strategy.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
9 MeSH Terms
In Silico Pharmacoepidemiologic Evaluation of Drug-Induced Cardiovascular Complications Using Combined Classifiers.
Cai C, Fang J, Guo P, Wang Q, Hong H, Moslehi J, Cheng F
(2018) J Chem Inf Model 58: 943-956
MeSH Terms: Antineoplastic Agents, Cardiovascular System, Computational Biology, Computer Simulation, Drug Discovery, Drug-Related Side Effects and Adverse Reactions, Humans, Molecular Targeted Therapy, Myocytes, Cardiac, Pluripotent Stem Cells, Product Surveillance, Postmarketing, Safety
Show Abstract · Added October 1, 2018
Drug-induced cardiovascular complications are the most common adverse drug events and account for the withdrawal or severe restrictions on the use of multitudinous postmarketed drugs. In this study, we developed new in silico models for systematic identification of drug-induced cardiovascular complications in drug discovery and postmarketing surveillance. Specifically, we collected drug-induced cardiovascular complications covering the five most common types of cardiovascular outcomes (hypertension, heart block, arrhythmia, cardiac failure, and myocardial infarction) from four publicly available data resources: Comparative Toxicogenomics Database, SIDER, Offsides, and MetaADEDB. Using these databases, we developed a combined classifier framework through integration of five machine-learning algorithms: logistic regression, random forest, k-nearest neighbors, support vector machine, and neural network. The totality of models included 180 single classifiers with area under receiver operating characteristic curves (AUC) ranging from 0.647 to 0.809 on 5-fold cross-validations. To develop the combined classifiers, we then utilized a neural network algorithm to integrate the best four single classifiers for each cardiovascular outcome. The combined classifiers had higher performance with an AUC range from 0.784 to 0.842 compared to single classifiers. Furthermore, we validated our predicted cardiovascular complications for 63 anticancer agents using experimental data from clinical studies, human pluripotent stem cell-derived cardiomyocyte assays, and literature. The success rate of our combined classifiers reached 87%. In conclusion, this study presents powerful in silico tools for systematic risk assessment of drug-induced cardiovascular complications. This tool is relevant not only in early stages of drug discovery but also throughout the life of a drug including clinical trials and postmarketing surveillance.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Phase II Study of Two Weeks on, One Week off Sunitinib Scheduling in Patients With Metastatic Renal Cell Carcinoma.
Jonasch E, Slack RS, Geynisman DM, Hasanov E, Milowsky MI, Rathmell WK, Stovall S, Juarez D, Gilchrist TR, Pruitt L, Ornstein MC, Plimack ER, Tannir NM, Rini BI
(2018) J Clin Oncol 36: 1588-1593
MeSH Terms: Administration, Oral, Aged, Aged, 80 and over, Antineoplastic Agents, Carcinoma, Renal Cell, Drug Administration Schedule, Female, Humans, Kidney Neoplasms, Male, Middle Aged, Sunitinib, Surveys and Questionnaires, Treatment Outcome
Show Abstract · Added October 30, 2019
Purpose Standard frontline treatment of patients with metastatic renal cell carcinoma currently includes sunitinib. A barrier to long-term treatment with sunitinib includes the development of significant adverse effects, including diarrhea, hand-foot syndrome (HFS), and fatigue. This trial assessed the effect of an alternate 2 weeks on, 1 week off (2/1) schedule of sunitinib on toxicity and efficacy in previously untreated patients with metastatic renal cell carcinoma. Methods Patients started with oral administration of 50 mg sunitinib on a 2/1 schedule and underwent schedule and dose alterations if toxicity developed. The primary end point was < 15% grade ≥ 3 fatigue, diarrhea, or HFS. With 60 patients, the upper bound of the CI would fall below the published 4/2 schedule grade ≥ 3 toxicity rate of 25% to 30%. Results Fifty-nine patients were treated between August 2014 and March 2016. Seventy-seven percent were intermediate or poor risk per Memorial Sloan Kettering Cancer Center criteria. With a median follow-up of 17 months, 25% of patients experienced grade 3 fatigue, HFS, or diarrhea; 37% required a dose reduction, and 10% discontinued because of toxicity. The overall response rate was 57%, median progression-free survival was 13.7 months, and median overall survival was not reached. At 12 weeks, Functional Assessment of Cancer Therapy-General scores dropped between 0% and 10% from baseline, with less reduction in patients who continued treatment longer. Conclusion The primary end point of decreased grade 3 toxicity was not met; however, treatment with a 2/1 sunitinib schedule is associated with a lack of grade 4 toxicity, a low patient discontinuation rate, and high efficacy.
0 Communities
1 Members
0 Resources
MeSH Terms
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.
Gao Q, Liang WW, Foltz SM, Mutharasu G, Jayasinghe RG, Cao S, Liao WW, Reynolds SM, Wyczalkowski MA, Yao L, Yu L, Sun SQ, Fusion Analysis Working Group, Cancer Genome Atlas Research Network, Chen K, Lazar AJ, Fields RC, Wendl MC, Van Tine BA, Vij R, Chen F, Nykter M, Shmulevich I, Ding L
(2018) Cell Rep 23: 227-238.e3
MeSH Terms: Antineoplastic Agents, Carcinogenesis, Cell Line, Tumor, Humans, Molecular Targeted Therapy, Neoplasms, Oncogene Fusion, Oncogene Proteins, Fusion
Show Abstract · Added October 30, 2019
Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms