Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 67

Publication Record

Connections

Resolution of Gastric Cancer-Promoting Inflammation: A Novel Strategy for Anti-cancer Therapy.
Piazuelo MB, Riechelmann RP, Wilson KT, Algood HMS
(2019) Curr Top Microbiol Immunol 421: 319-359
MeSH Terms: Cytokines, Gastric Mucosa, Helicobacter Infections, Helicobacter pylori, Humans, Inflammation, Stomach Neoplasms, Tumor Microenvironment
Show Abstract · Added June 6, 2019
The connection between inflammation and cancer was initially recognized by Rudolf Virchow in the nineteenth century. During the last decades, a large body of evidence has provided support to his hypothesis, and now inflammation is recognized as one of the hallmarks of cancer, both in etiopathogenesis and ongoing tumor growth. Infection with the pathogen Helicobacter pylori is the primary causal factor in 90% of gastric cancer (GC) cases. As we increase our understanding of how chronic inflammation develops in the stomach and contributes to carcinogenesis, there is increasing interest in targeting cancer-promoting inflammation as a strategy to treat GC. Moreover, once cancer develops and anti-cancer immune responses are suppressed, there is evidence of a substantial shift in the microenvironment and new targets for immune therapy emerge. In this chapter, we provide insight into inflammation-related factors, including T lymphocytes, macrophages, pro-inflammatory chemokines, and cytokines, which promote H. pylori-associated GC initiation and growth. While intervening with chronic inflammation is not a new practice in rheumatology or gastroenterology, this approach has not been fully explored for its potential to prevent carcinogenesis or to contribute to the treatment of GC. This review highlights current and possible strategies for therapeutic intervention including (i) targeting pro-inflammatory mediators, (ii) targeting growth factors and pathways involved in angiogenesis in the gastric tumor microenvironment, and (iii) enhancing anti-tumor immunity. In addition, we highlight a significant number of clinical trials and discuss the importance of individual tumor characterization toward offering personalized immune-related therapy.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Mechanical Forces in Tumor Angiogenesis.
Zanotelli MR, Reinhart-King CA
(2018) Adv Exp Med Biol 1092: 91-112
MeSH Terms: Biomechanical Phenomena, Endothelial Cells, Extracellular Fluid, Humans, Neoplasms, Neovascularization, Pathologic, Tumor Microenvironment
Show Abstract · Added April 10, 2019
A defining hallmark of cancer and cancer development is upregulated angiogenesis. The vasculature formed in tumors is structurally abnormal, not organized in the conventional hierarchical arrangement, and more permeable than normal vasculature. These features contribute to leaky, tortuous, and dilated blood vessels, which act to create heterogeneous blood flow, compression of vessels, and elevated interstitial fluid pressure. As such, abnormalities in the tumor vasculature not only affect the delivery of nutrients and oxygen to the tumor, but also contribute to creating an abnormal tumor microenvironment that further promotes tumorigenesis. The role of chemical signaling events in mediating tumor angiogenesis has been well researched; however, the relative contribution of physical cues and mechanical regulation of tumor angiogenesis is less understood. Growing research indicates that the physical microenvironment plays a significant role in tumor progression and promoting abnormal tumor vasculature. Here, we review how mechanical cues found in the tumor microenvironment promote aberrant tumor angiogenesis. Specifically, we discuss the influence of matrix stiffness and mechanical stresses in tumor tissue on tumor vasculature, as well as the mechanosensory pathways utilized by endothelial cells to respond to the physical cues found in the tumor microenvironment. We also discuss the impact of the resulting aberrant tumor vasculature on tumor progression and therapeutic treatment.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Efferocytosis in the tumor microenvironment.
Werfel TA, Cook RS
(2018) Semin Immunopathol 40: 545-554
MeSH Terms: Animals, Apoptosis, Biomarkers, Humans, Macrophages, Neoplasms, Phagocytes, Phagocytosis, Tumor Microenvironment
Show Abstract · Added April 15, 2019
Within the course of a single minute, millions of cells in the human body will undergo programmed cell death in response to physiological or pathological cues. The diminished energetic capacity of an apoptotic cell renders the cell incapable of sustaining plasma membrane integrity. Under these circumstances, intracellular contents that might leak into the surrounding tissue microenvironment, a process referred to as secondary necrosis, could induce inflammation and tissue damage. Remarkably, in most cases of physiologically rendered apoptotic cell death, inflammation is avoided because a mechanism to swiftly remove apoptotic cells from the tissue prior to their secondary necrosis becomes activated. This mechanism, referred to as efferocytosis, uses phagocytes to precisely identify and engulf neighboring apoptotic cells. In doing so, efferocytosis mantains tissue homeostasis that would otherwise be disrupted by normal cellular turnover and exacerbated further when the burden of apoptotic cells becomes elevated due to disease or insult. Efferocytosis also supports the resolution of inflammation, restoring tissue homesostasis. The importance of efferocytosis in health and disease underlies the increasing research efforts to understand the mechanisms by which efferocytosis occurs, and how a failure in the efferocytic machinery contributes to diseases, or conversely, how cancers effectively use the existing efferocytic machinery to generate a tumor-tolerant, immunosuppressive tumor microenvironment. We discuss herein the molecular mechanisms of efferocytosis, how the process of efferocytosis might support a tumor 'wound healing' phenotype, and efforts to target efferocytosis as an adjunct to existing tumor treatments.
0 Communities
1 Members
0 Resources
MeSH Terms
Early TGF-β inhibition in mice reduces the incidence of breast cancer induced bone disease in a myeloid dependent manner.
Buenrostro D, Kwakwa KA, Putnam NE, Merkel AR, Johnson JR, Cassat JE, Sterling JA
(2018) Bone 113: 77-88
MeSH Terms: Animals, Bone Neoplasms, Female, Humans, Mammary Neoplasms, Experimental, Mice, Mice, Knockout, Myeloid Progenitor Cells, Transforming Growth Factor beta, Tumor Microenvironment
Show Abstract · Added April 15, 2019
The tumor-cell microenvironment is recognized as a dynamic place where critical cell interactions occur and play an important role in altering tumorigenesis. While many studies have investigated the effects of cellular cross-talk within distinct tumor microenvironments, these interactions have yet to be fully examined in bone. It is well-established that many common cancers metastasize to bone, resulting in the development of tumor-induced bone disease (TIBD), a multi-facetted illness that is driven by complex cell interactions within the bone marrow. Our group has previously published that myeloid progenitor cells expand in the presence of tumors in bone, aligning with the notion that myeloid cells can act as tumor promotors. Several groups, including ours, have established that transforming growth factor β (TGF-β), an abundant growth factor in bone, can regulate both TIBD and myeloid expansion. TGF-β inhibitors have been shown to increase bone volume, decrease bone destruction, and reduce but not eliminate tumor. Therefore, we hypothesize that inhibiting TGF-β will reduce myeloid expansion leading to a reduction of tumor burden in bone and osteoclast-mediated bone loss, causing to an overall reduction in TIBD. To address this hypothesis, two different mouse models of breast cancer bone colonization were pre-treated with the TGF-β neutralizing antibody, 1D11, prior to tumor inoculation (athymic: MDA-MB-231, BALB/c: 4T1) and continuously treated until sacrifice. Additionally, a genetically modified mouse model with a myeloid specific deletion of transforming growth factor beta receptor II (TGF-βRII) (TGF-βRII) was utilized in our studies. Systemic inhibition of TGF-β lead to fewer osteolytic lesions, and reduced tumor burden in bone as expected from previous studies. Additionally, early TGF-β inhibition affected expansion of distinct myeloid populations and shifted the cytokine profile of pro-tumorigenic factors in bone, 4T1 tumor cells, and bone-marrow derived macrophages. Similar observations were seen in tumor-bearing TGF-βRII mice, where these mice contained fewer bone lesions and significantly less tumor burden in bone, suggesting that TGF-β inhibition regulates myeloid expansion leading to a significant reduction in TIBD.
Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
10 MeSH Terms
3D bone models to study the complex physical and cellular interactions between tumor and the bone microenvironment.
Vanderburgh JP, Guelcher SA, Sterling JA
(2018) J Cell Biochem 119: 5053-5059
MeSH Terms: Animals, Bone Neoplasms, Bone and Bones, Cellular Microenvironment, Humans, Models, Biological, Tissue Engineering, Tissue Scaffolds, Tumor Microenvironment
Show Abstract · Added April 15, 2019
As the complexity of interactions between tumor and its microenvironment has become more evident, a critical need to engineer in vitro models that veritably recapitulate the 3D microenvironment and relevant cell populations has arisen. This need has caused many groups to move away from the traditional 2D, tissue culture plastic paradigms in favor of 3D models with materials that more closely replicate the in vivo milieu. Creating these 3D models remains a difficult endeavor for hard and soft tissues alike as the selection of materials, fabrication processes, and optimal conditions for supporting multiple cell populations makes model development a nontrivial task. Bone tissue in particular is uniquely difficult to model in part because of the limited availability of materials that can accurately capture bone rigidity and architecture, and also due to the dependence of both bone and tumor cell behavior on mechanical signaling. Additionally, the bone is a complex cellular microenvironment with multiple cell types present, including relatively immature, pluripotent cells in the bone marrow. This prospect will focus on the current 3D models in development to more accurately replicate the bone microenvironment, which will help facilitate improved understanding of bone turnover, tumor-bone interactions, and drug response. These studies have demonstrated the importance of accurately modelling the bone microenvironment in order to fully understand signaling and drug response, and the significant effects that model properties such as architecture, rigidity, and dynamic mechanical factors have on tumor and bone cell response.
© 2018 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
9 MeSH Terms
T Cells Expressing Checkpoint Receptor TIGIT Are Enriched in Follicular Lymphoma Tumors and Characterized by Reversible Suppression of T-cell Receptor Signaling.
Josefsson SE, Huse K, Kolstad A, Beiske K, Pende D, Steen CB, Inderberg EM, Lingjærde OC, Østenstad B, Smeland EB, Levy R, Irish JM, Myklebust JH
(2018) Clin Cancer Res 24: 870-881
MeSH Terms: Antigens, Differentiation, T-Lymphocyte, CD8-Positive T-Lymphocytes, Cytokines, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, Lymphoma, Follicular, Receptors, Antigen, T-Cell, Receptors, Immunologic, Signal Transduction, T-Lymphocyte Subsets, Tumor Microenvironment
Show Abstract · Added December 15, 2017
T cells infiltrating follicular lymphoma (FL) tumors are considered dysfunctional, yet the optimal target for immune checkpoint blockade is unknown. Characterizing coinhibitory receptor expression patterns and signaling responses in FL T-cell subsets might reveal new therapeutic targets. Surface expression of 9 coinhibitory receptors governing T-cell function was characterized in T-cell subsets from FL lymph node tumors and from healthy donor tonsils and peripheral blood samples, using high-dimensional flow cytometry. The results were integrated with T-cell receptor (TCR)-induced signaling and cytokine production. Expression of T-cell immunoglobulin and ITIM domain (TIGIT) ligands was detected by immunohistochemistry. TIGIT was a frequently expressed coinhibitory receptor in FL, expressed by the majority of CD8 T effector memory cells, which commonly coexpressed exhaustion markers such as PD-1 and CD244. CD8 FL T cells demonstrated highly reduced TCR-induced phosphorylation (p) of ERK and reduced production of IFNγ, while TCR proximal signaling (p-CD3ζ, p-SLP76) was not affected. The TIGIT ligands CD112 and CD155 were expressed by follicular dendritic cells in the tumor microenvironment. Dysfunctional TCR signaling correlated with TIGIT expression in FL CD8 T cells and could be fully restored upon culture. The costimulatory receptor CD226 was downregulated in TIGIT compared with TIGIT CD8 FL T cells, further skewing the balance toward immunosuppression. TIGIT blockade is a relevant strategy for improved immunotherapy in FL. A deeper understanding of the interplay between coinhibitory receptors and key T-cell signaling events can further assist in engineering immunotherapeutic regimens to improve clinical outcomes of cancer patients. .
©2017 American Association for Cancer Research.
1 Communities
1 Members
0 Resources
12 MeSH Terms
Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin.
Erdogan B, Ao M, White LM, Means AL, Brewer BM, Yang L, Washington MK, Shi C, Franco OE, Weaver AM, Hayward SW, Li D, Webb DJ
(2017) J Cell Biol 216: 3799-3816
MeSH Terms: Cancer-Associated Fibroblasts, Cell Communication, Cell Line, Tumor, Cell Movement, Coculture Techniques, Extracellular Matrix, Fibronectins, Humans, Integrin alpha5beta1, Male, Mechanotransduction, Cellular, Neoplasm Invasiveness, Nonmuscle Myosin Type IIA, Prostatic Neoplasms, RNA Interference, Receptor, Platelet-Derived Growth Factor alpha, Time Factors, Transfection, Tumor Cells, Cultured, Tumor Microenvironment
Show Abstract · Added March 14, 2018
Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF-cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α-mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration.
© 2017 Erdogan et al.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Emerging biomarkers for cancer immunotherapy in melanoma.
Axelrod ML, Johnson DB, Balko JM
(2018) Semin Cancer Biol 52: 207-215
MeSH Terms: Animals, Antibodies, Monoclonal, Biomarkers, Tumor, Humans, Immunotherapy, Melanoma, Tumor Microenvironment
Show Abstract · Added March 14, 2018
The treatment and prognosis of metastatic melanoma has changed substantially since the advent of novel immune checkpoint inhibitors (ICI), agents that enhance the anti-tumor immune response. Despite the success of these agents, clinically actionable biomarkers to aid patient and regimen selection are lacking. Herein, we summarize and review the evidence for candidate biomarkers of response to ICIs in melanoma. Many of these candidates can be examined as parts of a known molecular pathway of immune response, while others are clinical in nature. Due to the ability of ICIs to illicit dramatic and durable responses, well-validated biomarkers that can be effectively implemented in the clinic will require strong negative predictive values that do not limit patients with who may benefit from ICI therapy.
Copyright © 2017 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Regulatory myeloid cells: an underexplored continent in B-cell lymphomas.
Roussel M, Irish JM, Menard C, Lhomme F, Tarte K, Fest T
(2017) Cancer Immunol Immunother 66: 1103-1111
MeSH Terms: Animals, Carcinogenesis, Gene Expression Regulation, Neoplastic, Germinal Center, Humans, Immunomodulation, Lymphoma, B-Cell, Myeloid-Derived Suppressor Cells, Tumor Escape, Tumor Microenvironment
Show Abstract · Added August 19, 2017
In lymphomas arising from the germinal center, prognostic factors are linked to the myeloid compartment. In particular, high circulating monocyte or myeloid-derived suppressor cell counts are associated with poor prognosis for patients with high-grade B-cell lymphomas. Macrophages with an M2 phenotype are enriched within lymphoma tumors. However, the M1/M2 nomenclature is now deprecated and the clinical impact of this phenotype remains controversial. Across cancer types, myeloid cells are primarily thought to function as immune suppressors during tumor initiation and maintenance, but the biological mechanisms behind the myeloid signatures are still poorly understood in germinal center B-cell lymphomas. Herein, we describe the role and clinical relevance of myeloid cells in B-cell lymphoma and propose innovative approaches to decipher this complex cellular compartment. Indeed, characterization of this heterogeneous cell ecosystem has been largely accomplished with "low-resolution" approaches like morphological evaluation and immunohistochemistry, where cells are characterized using a few proteins and qualitative metrics. High-resolution, quantitative approaches, such as mass cytometry, are valuable to better understand myeloid cell diversity, functions, and to identify potential targets for novel therapies.
2 Communities
1 Members
0 Resources
10 MeSH Terms
Engineering 3D Models of Tumors and Bone to Understand Tumor-Induced Bone Disease and Improve Treatments.
Kwakwa KA, Vanderburgh JP, Guelcher SA, Sterling JA
(2017) Curr Osteoporos Rep 15: 247-254
MeSH Terms: Bone Neoplasms, Bone and Bones, Collagen, Humans, Models, Biological, Polyurethanes, Printing, Three-Dimensional, Silk, Tissue Engineering, Tissue Scaffolds, Tumor Microenvironment
Show Abstract · Added March 21, 2018
PURPOSE OF REVIEW - Bone is a structurally unique microenvironment that presents many challenges for the development of 3D models for studying bone physiology and diseases, including cancer. As researchers continue to investigate the interactions within the bone microenvironment, the development of 3D models of bone has become critical.
RECENT FINDINGS - 3D models have been developed that replicate some properties of bone, but have not fully reproduced the complex structural and cellular composition of the bone microenvironment. This review will discuss 3D models including polyurethane, silk, and collagen scaffolds that have been developed to study tumor-induced bone disease. In addition, we discuss 3D printing techniques used to better replicate the structure of bone. 3D models that better replicate the bone microenvironment will help researchers better understand the dynamic interactions between tumors and the bone microenvironment, ultimately leading to better models for testing therapeutics and predicting patient outcomes.
0 Communities
2 Members
0 Resources
11 MeSH Terms