Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 1482

Publication Record

Connections

A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure.
Ceddia RP, Collins S
(2020) Clin Sci (Lond) 134: 473-512
MeSH Terms: Adipocytes, Adipose Tissue, Animals, Diabetes Mellitus, Type 2, Energy Metabolism, Humans, Lipolysis, Nucleotides, Cyclic, Receptors, G-Protein-Coupled, Signal Transduction
Show Abstract · Added March 26, 2020
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
© 2020 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
0 Communities
2 Members
0 Resources
10 MeSH Terms
Cardio-Immuno-Oncology.
Zaha VG, Meijers WC, Moslehi J
(2020) Circulation 141: 87-89
MeSH Terms: Cardiovascular Diseases, Cell- and Tissue-Based Therapy, Cytokines, Humans, Immune System, Immunotherapy, Neoplasms, Prognosis
Added January 15, 2020
0 Communities
1 Members
0 Resources
8 MeSH Terms
IL-10-producing B cells are enriched in murine pericardial adipose tissues and ameliorate the outcome of acute myocardial infarction.
Wu L, Dalal R, Cao CD, Postoak JL, Yang G, Zhang Q, Wang Z, Lal H, Van Kaer L
(2019) Proc Natl Acad Sci U S A 116: 21673-21684
MeSH Terms: Adipose Tissue, Animals, B-Lymphocytes, Chemokine CXCL13, Female, Inflammation, Interleukin-10, Interleukin-33, Lymphocyte Count, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Myocardial Infarction, Pericardium, Regeneration
Show Abstract · Added March 3, 2020
Acute myocardial infarction (MI) provokes an inflammatory response in the heart that removes damaged tissues to facilitate tissue repair/regeneration. However, overactive and prolonged inflammation compromises healing, which may be counteracted by antiinflammatory mechanisms. A key regulatory factor in an inflammatory response is the antiinflammatory cytokine IL-10, which can be produced by a number of immune cells, including subsets of B lymphocytes. Here, we investigated IL-10-producing B cells in pericardial adipose tissues (PATs) and their role in the healing process following acute MI in mice. We found that IL-10-producing B cells were enriched in PATs compared to other adipose depots throughout the body, with the majority of them bearing a surface phenotype consistent with CD5 B-1a cells (CD5 B cells). These cells were detected early in life, maintained a steady presence during adulthood, and resided in fat-associated lymphoid clusters. The cytokine IL-33 and the chemokine CXCL13 were preferentially expressed in PATs and contributed to the enrichment of IL-10-producing CD5 B cells. Following acute MI, the pool of CD5 B cells was expanded in PATs. These cells accumulated in the infarcted heart during the resolution of MI-induced inflammation. B cell-specific deletion of IL-10 worsened cardiac function, exacerbated myocardial injury, and delayed resolution of inflammation following acute MI. These results revealed enrichment of IL-10-producing B cells in PATs and a significant contribution of these cells to the antiinflammatory processes that terminate MI-induced inflammation. Together, these findings have identified IL-10-producing B cells as therapeutic targets to improve the outcome of MI.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Targeted mobilization of Lrig1 gastric epithelial stem cell populations by a carcinogenic type IV secretion system.
Wroblewski LE, Choi E, Petersen C, Delgado AG, Piazuelo MB, Romero-Gallo J, Lantz TL, Zavros Y, Coffey RJ, Goldenring JR, Zemper AE, Peek RM
(2019) Proc Natl Acad Sci U S A 116: 19652-19658
MeSH Terms: Adenocarcinoma, Animals, Carcinogenesis, Disease Models, Animal, Epithelial Cells, Female, Gastric Mucosa, Gastritis, Helicobacter Infections, Helicobacter pylori, Humans, Male, Membrane Glycoproteins, Mice, Mice, Knockout, Nerve Tissue Proteins, Precancerous Conditions, Primary Cell Culture, Risk Factors, Stem Cells, Stomach, Stomach Neoplasms, Type IV Secretion Systems
Show Abstract · Added September 27, 2019
-induced gastritis is the strongest risk factor for gastric adenocarcinoma, a malignancy preceded by a series of well-defined histological stages, including metaplasia. One microbial constituent that augments cancer risk is the type 4 secretion system (T4SS), which translocates the oncoprotein CagA into host cells. Aberrant stem cell activation is linked to carcinogenesis, and Lrig1 (leucine-rich repeats and Ig-like domains 1) marks a distinct population of progenitor cells. We investigated whether microbial effectors with carcinogenic potential influence Lrig1 progenitor cells ex vivo and via lineage expansion within -infected gastric mucosa. Lineage tracing was induced in (Lrig1/YFP) mice that were uninfected or subsequently infected with or an isogenic mutant (nonfunctional T4SS). In contrast to infection with wild-type (WT) for 2 wk, infection for 8 wk resulted in significantly increased inflammation and proliferation in the corpus and antrum compared with uninfected or mice infected with the mutant. WT -infected mice harbored significantly higher numbers of Lrig1/YFP epithelial cells that coexpressed UEA1 (surface cell marker). The number of cells coexpressing intrinsic factor (chief cell marker), YFP (lineage marker), and GSII lectin (spasmolytic polypeptide-expressing metaplasia marker) were increased only by WT In human samples, Lrig1 expression was significantly increased in lesions with premalignant potential compared with normal mucosa or nonatrophic gastritis. In conclusion, chronic infection stimulates Lrig1-expressing progenitor cells in a -dependent manner, and these reprogrammed cells give rise to a full spectrum of differentiated cells.
1 Communities
1 Members
0 Resources
23 MeSH Terms
Unknown actor in adipose tissue metabolism hiding in plain sight.
Collins S
(2019) Proc Natl Acad Sci U S A 116: 17145-17146
MeSH Terms: Adipose Tissue, Thermogenesis
Added July 22, 2020
0 Communities
1 Members
0 Resources
MeSH Terms
A recommended and verified procedure for in situ tryptic digestion of formalin-fixed paraffin-embedded tissues for analysis by matrix-assisted laser desorption/ionization imaging mass spectrometry.
Judd AM, Gutierrez DB, Moore JL, Patterson NH, Yang J, Romer CE, Norris JL, Caprioli RM
(2019) J Mass Spectrom 54: 716-727
MeSH Terms: Formaldehyde, Humans, Paraffin Embedding, Proteins, Proteolysis, Specimen Handling, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Tissue Array Analysis, Tissue Fixation, Trypsin
Show Abstract · Added October 15, 2019
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a molecular imaging technology uniquely capable of untargeted measurement of proteins, lipids, and metabolites while retaining spatial information about their location in situ. This powerful combination of capabilities has the potential to bring a wealth of knowledge to the field of molecular histology. Translation of this innovative research tool into clinical laboratories requires the development of reliable sample preparation protocols for the analysis of proteins from formalin-fixed paraffin-embedded (FFPE) tissues, the standard preservation process in clinical pathology. Although ideal for stained tissue analysis by microscopy, the FFPE process cross-links, disrupts, or can remove proteins from the tissue, making analysis of the protein content challenging. To date, reported approaches differ widely in process and efficacy. This tutorial presents a strategy derived from systematic testing and optimization of key parameters, for reproducible in situ tryptic digestion of proteins in FFPE tissue and subsequent MALDI IMS analysis. The approach describes a generalized method for FFPE tissues originating from virtually any source.
© 2019 John Wiley & Sons, Ltd.
0 Communities
2 Members
0 Resources
MeSH Terms
Actin assembly and non-muscle myosin activity drive dendrite retraction in an UNC-6/Netrin dependent self-avoidance response.
Sundararajan L, Smith CJ, Watson JD, Millis BA, Tyska MJ, Miller DM
(2019) PLoS Genet 15: e1008228
MeSH Terms: Actin Cytoskeleton, Actin-Related Protein 2-3 Complex, Actins, Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Dendritic Cells, Membrane Proteins, Myosin Heavy Chains, Nerve Tissue Proteins, Netrins, Neurons, Nonmuscle Myosin Type IIB
Show Abstract · Added March 3, 2020
Dendrite growth is constrained by a self-avoidance response that induces retraction but the downstream pathways that balance these opposing mechanisms are unknown. We have proposed that the diffusible cue UNC-6(Netrin) is captured by UNC-40(DCC) for a short-range interaction with UNC-5 to trigger self-avoidance in the C. elegans PVD neuron. Here we report that the actin-polymerizing proteins UNC-34(Ena/VASP), WSP-1(WASP), UNC-73(Trio), MIG-10(Lamellipodin) and the Arp2/3 complex effect dendrite retraction in the self-avoidance response mediated by UNC-6(Netrin). The paradoxical idea that actin polymerization results in shorter rather than longer dendrites is explained by our finding that NMY-1 (non-muscle myosin II) is necessary for retraction and could therefore mediate this effect in a contractile mechanism. Our results also show that dendrite length is determined by the antagonistic effects on the actin cytoskeleton of separate sets of effectors for retraction mediated by UNC-6(Netrin) versus outgrowth promoted by the DMA-1 receptor. Thus, our findings suggest that the dendrite length depends on an intrinsic mechanism that balances distinct modes of actin assembly for growth versus retraction.
0 Communities
1 Members
0 Resources
MeSH Terms
Fibroblast-specific plasminogen activator inhibitor-1 depletion ameliorates renal interstitial fibrosis after unilateral ureteral obstruction.
Yao L, Wright MF, Farmer BC, Peterson LS, Khan AM, Zhong J, Gewin L, Hao CM, Yang HC, Fogo AB
(2019) Nephrol Dial Transplant 34: 2042-2050
MeSH Terms: Actins, Animals, Collagen Type I, Connective Tissue Growth Factor, Extracellular Matrix Proteins, Fibroblasts, Fibrosis, Kidney Diseases, Mice, Mice, Knockout, Nerve Tissue Proteins, Serpin E2, Transforming Growth Factor beta, Ureteral Obstruction
Show Abstract · Added March 18, 2020
BACKGROUND - Plasminogen activator inhibitor-1 (PAI-1) expression increases extracellular matrix deposition and contributes to interstitial fibrosis in the kidney after injury. While PAI-1 is ubiquitously expressed in the kidney, we hypothesized that interstitial fibrosis is strongly dependent on fibroblast-specific PAI-1 (fbPAI-1).
METHODS - Tenascin C Cre (TNC Cre) and fbPAI-1 knockdown (KD) mice with green fluorescent protein (GFP) expressed within the TNC construct underwent unilateral ureteral obstruction and were sacrificed 10 days later.
RESULTS - GFP+ cells in fbPAI-1 KD mice showed significantly reduced PAI-1 expression. Interstitial fibrosis, measured by Sirius red staining and collagen I western blot, was significantly decreased in fbPAI-1 KD compared with TNC Cre mice. There was no significant difference in transforming growth factor β (TGF-β) expression or its activation between the two groups. However, GFP+ cells from fbPAI-1 KD mice had lower TGF β and connective tissue growth factor (CTGF) expression. The number of fibroblasts was decreased in fbPAI-1 KD compared with TNC Cre mice, correlating with decreased alpha smooth muscle actin (α-SMA) expression and less fibroblast cell proliferation. TNC Cre mice had decreased E-cadherin, a marker of differentiated tubular epithelium, in contrast to preserved expression in fbPAI-1 KD. F4/80-expressing cells, mostly CD11c+/F4/80+ cells, were increased while M1 macrophage markers were decreased in fbPAI-1 KD compared with TNC Cre mice.
CONCLUSION - These findings indicate that fbPAI-1 depletion ameliorates interstitial fibrosis by decreasing fibroblast proliferation in the renal interstitium, with resulting decreased collagen I. This is linked to decreased M1 macrophages and preserved tubular epithelium.
© The Author(s) 2019. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms
NATF (Native and Tissue-Specific Fluorescence): A Strategy for Bright, Tissue-Specific GFP Labeling of Native Proteins in .
He S, Cuentas-Condori A, Miller DM
(2019) Genetics 212: 387-395
MeSH Terms: Animals, CRISPR-Cas Systems, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Fluorescence, Gene Editing, Green Fluorescent Proteins, Membrane Proteins, Nerve Tissue Proteins
Show Abstract · Added March 3, 2020
GFP labeling by genome editing can reveal the authentic location of a native protein, but is frequently hampered by weak GFP signals and broad expression across a range of tissues that may obscure cell-specific localization. To overcome these problems, we engineered a Native And Tissue-specific Fluorescence (NATF) strategy that combines genome editing and split-GFP to yield bright, cell-specific protein labeling. We use clustered regularly interspaced short palindromic repeats CRISPR/Cas9 to insert a tandem array of seven copies of the GFP11 β-strand ( ) at the genomic locus of each target protein. The resultant knock-in strain is then crossed with separate reporter lines that express the complementing split-GFP fragment () in specific cell types, thus affording tissue-specific labeling of the target protein at its native level. We show that NATF reveals the otherwise undetectable intracellular location of the immunoglobulin protein OIG-1 and demarcates the receptor auxiliary protein LEV-10 at cell-specific synaptic domains in the nervous system.
Copyright © 2019 by the Genetics Society of America.
0 Communities
1 Members
0 Resources
MeSH Terms
Extrinsic and Intrinsic Immunometabolism Converge: Perspectives on Future Research and Therapeutic Development for Obesity.
Caslin HL, Hasty AH
(2019) Curr Obes Rep 8: 210-219
MeSH Terms: Adaptive Immunity, Adipose Tissue, Animals, Energy Metabolism, Epigenesis, Genetic, Humans, Immunity, Immunologic Memory, Iron, Macrophages, Metabolic Diseases, Metabolic Networks and Pathways, MicroRNAs, Obesity
Show Abstract · Added March 3, 2020
PURPOSE OF REVIEW - Research over the past decade has shown that immunologic and metabolic pathways are intricately linked. This burgeoning field of immunometabolism includes intrinsic and extrinsic pathways and is known to be associated with obesity-accelerated metabolic disease. Intrinsic immunometabolism includes the study of fuel utilization and bioenergetic pathways that influence immune cell function. Extrinsic immunometabolism includes the study of immune cells and products that influence systemic metabolism.
RECENT FINDINGS - Th2 immunity, macrophage iron handling, adaptive immune memory, and epigenetic regulation of immunity, which all require intrinsic metabolic changes, play a role in systemic metabolism and metabolic function, linking the two arms of immunometabolism. Together, this suggests that targeting intrinsic immunometabolism can directly affect immune function and ultimately systemic metabolism. We highlight important questions for future basic research that will help improve translational research and provide therapeutic targets to help establish new treatments for obesity and associated metabolic disorders.
0 Communities
1 Members
0 Resources
MeSH Terms