Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 52

Publication Record

Connections

Disruption of Rab8a and Rab11a causes formation of basolateral microvilli in neonatal enteropathy.
Feng Q, Bonder EM, Engevik AC, Zhang L, Tyska MJ, Goldenring JR, Gao N
(2017) J Cell Sci 130: 2491-2505
MeSH Terms: Animals, Enterocytes, Genetic Diseases, Inborn, Intestinal Diseases, Mice, Mice, Knockout, Microvilli, Myosin Type V, rab GTP-Binding Proteins
Show Abstract · Added April 10, 2018
Misplaced formation of microvilli to basolateral domains and intracellular inclusions in enterocytes are pathognomonic features in congenital enteropathy associated with mutation of the apical plasma membrane receptor syntaxin 3 (STX3). Although the demonstrated binding of Myo5b to the Rab8a and Rab11a small GTPases implicates cytoskeleton-dependent membrane sorting, the mechanisms underlying the microvillar location defect remain unclear. By selective or combinatory disruption of Rab8a and Rab11a membrane traffic , we demonstrate that transport of distinct cargo to the apical brush border rely on either individual or both Rab regulators, whereas certain basolateral cargos are redundantly transported by both factors. Enterocyte-specific and double-knockout mouse neonates showed immediate postnatal lethality and more severe enteropathy than single knockouts, with extensive formation of microvilli along basolateral surfaces. Notably, following an inducible deletion from neonatal enterocytes, basolateral microvilli were induced within 3 days. These data identify a potentially important and distinct mechanism for a characteristic microvillus defect exhibited by enterocytes of patients with neonatal enteropathy.
© 2017. Published by The Company of Biologists Ltd.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Abnormal Rab11-Rab8-vesicles cluster in enterocytes of patients with microvillus inclusion disease.
Vogel GF, Janecke AR, Krainer IM, Gutleben K, Witting B, Mitton SG, Mansour S, Ballauff A, Roland JT, Engevik AC, Cutz E, Müller T, Goldenring JR, Huber LA, Hess MW
(2017) Traffic 18: 453-464
MeSH Terms: Caco-2 Cells, Cell Membrane, Enterocytes, Humans, Malabsorption Syndromes, Male, Microvilli, Mucolipidoses, Mutation, Myosin Type V, Protein Transport, Qa-SNARE Proteins, Secretory Vesicles, rab GTP-Binding Proteins
Show Abstract · Added April 18, 2017
Microvillus inclusion disease (MVID) is a congenital enteropathy characterized by accumulation of vesiculo-tubular endomembranes in the subapical cytoplasm of enterocytes, historically termed "secretory granules." However, neither their identity nor pathophysiological significance is well defined. Using immunoelectron microscopy and tomography, we studied biopsies from MVID patients (3× Myosin 5b mutations and 1× Syntaxin3 mutation) and compared them to controls and genome-edited CaCo2 cell models, harboring relevant mutations. Duodenal biopsies from 2 patients with novel Myosin 5b mutations and typical clinical symptoms showed unusual ultrastructural phenotypes: aberrant subapical vesicles and tubules were prominent in the enterocytes, though other histological hallmarks of MVID were almost absent (ectopic intra-/intercellular microvilli, brush border atrophy). We identified these enigmatic vesiculo-tubular organelles as Rab11-Rab8-positive recycling compartments of altered size, shape and location harboring the apical SNARE Syntaxin3, apical transporters sodium-hydrogen exchanger 3 (NHE3) and cystic fibrosis transmembrane conductance regulator. Our data strongly indicate that in MVID disrupted trafficking between cargo vesicles and the apical plasma membrane is the primary cause of a defect of epithelial polarity and subsequent facultative loss of brush border integrity, leading to malabsorption. Furthermore, they support the notion that mislocalization of transporters, such as NHE3 substantially contributes to the reported sodium loss diarrhea.
© 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
0 Communities
2 Members
0 Resources
14 MeSH Terms
The Par3 polarity protein is an exocyst receptor essential for mammary cell survival.
Ahmed SM, Macara IG
(2017) Nat Commun 8: 14867
MeSH Terms: Animals, Apoptosis, Cadherins, Cell Adhesion Molecules, Cell Line, Cell Polarity, Cell Survival, Enzyme Activation, Epithelial Cells, Female, Gene Knockdown Techniques, Golgi Apparatus, Humans, Lysine, Mammary Glands, Animal, Models, Biological, PTEN Phosphohydrolase, Phosphatidylinositol Phosphates, Phosphorylation, Protein Domains, Proto-Oncogene Proteins c-akt, Vesicular Transport Proteins, rab GTP-Binding Proteins
Show Abstract · Added April 26, 2017
The exocyst is an essential component of the secretory pathway required for delivery of basolateral proteins to the plasma membranes of epithelial cells. Delivery occurs adjacent to tight junctions (TJ), suggesting that it recognizes a receptor at this location. However, no such receptor has been identified. The Par3 polarity protein associates with TJs but has no known function in membrane traffic. We now show that, unexpectedly, Par3 is essential for mammary cell survival. Par3 silencing causes apoptosis, triggered by phosphoinositide trisphosphate depletion and decreased Akt phosphorylation, resulting from failure of the exocyst to deliver basolateral proteins to the cortex. A small region of PAR3 binds directly to Exo70 and is sufficient for exocyst docking, membrane-protein delivery and cell survival. PAR3 lacking this domain can associate with the cortex but cannot support exocyst function. We conclude that Par3 is the long-sought exocyst receptor required for targeted membrane-protein delivery.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Interaction of phosphorylated Rab11-FIP2 with Eps15 regulates apical junction composition.
Lapierre LA, Manning EH, Mitchell KM, Caldwell CM, Goldenring JR
(2017) Mol Biol Cell 28: 1088-1100
MeSH Terms: Adaptor Proteins, Signal Transducing, Animals, Cadherins, Carrier Proteins, Cell Polarity, Dogs, Endosomes, Epithelial Cells, Gene Knockout Techniques, HEK293 Cells, Humans, Intercellular Junctions, Madin Darby Canine Kidney Cells, Membrane Proteins, Occludin, Phosphorylation, Protein Binding, Protein Transport, rab GTP-Binding Proteins
Show Abstract · Added April 18, 2017
MARK2 regulates the establishment of polarity in Madin-Darby canine kidney (MDCK) cells in part through phosphorylation of serine 227 of Rab11-FIP2. We identified Eps15 as an interacting partner of phospho-S227-Rab11-FIP2 (pS227-FIP2). During recovery from low calcium, Eps15 localized to the lateral membrane before pS227-FIP2 arrival. Later in recovery, Eps15 and pS227-FIP2 colocalized at the lateral membrane. In MDCK cells expressing the pseudophosphorylated FIP2 mutant FIP2(S227E), during recovery from low calcium, Eps15 was trapped and never localized to the lateral membrane. Mutation of any of the three NPF domains within GFP-FIP2(S227E) rescued Eps15 localization at the lateral membrane and reestablished single-lumen cyst formation in GFP-FIP2(S227E)-expressing cells in three-dimensional (3D) culture. Whereas expression of GFP-FIP2(S227E) induced the loss of E-cadherin and occludin, mutation of any of the NPF domains of GFP-FIP2(S227E) reestablished both proteins at the apical junctions. Knockdown of Eps15 altered the spatial and temporal localization of pS227-FIP2 and also elicited formation of multiple lumens in MDCK 3D cysts. Thus an interaction of Eps15 and pS227-FIP2 at the appropriate time and location in polarizing cells is necessary for proper establishment of epithelial polarity.
© 2017 Lapierre et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
0 Communities
1 Members
0 Resources
19 MeSH Terms
Cortactin promotes exosome secretion by controlling branched actin dynamics.
Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, Weaver AM
(2016) J Cell Biol 214: 197-213
MeSH Terms: Actin-Related Protein 2-3 Complex, Actins, Biological Transport, Cell Line, Tumor, Cell Membrane, Cortactin, Exosomes, Humans, Microfilament Proteins, Models, Biological, Molecular Docking Simulation, Multivesicular Bodies, Phenotype, Protein Binding, Pseudopodia, RNA, Small Interfering, Tetraspanin 30, rab GTP-Binding Proteins
Show Abstract · Added April 7, 2017
Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites.
© 2016 Sinha et al.
1 Communities
2 Members
0 Resources
18 MeSH Terms
Rab11-FIP1A regulates early trafficking into the recycling endosomes.
Schafer JC, McRae RE, Manning EH, Lapierre LA, Goldenring JR
(2016) Exp Cell Res 340: 259-73
MeSH Terms: Cell Membrane, Endosomes, Green Fluorescent Proteins, HeLa Cells, Humans, Membrane Proteins, Protein Binding, Protein Transport, Transferrin, rab GTP-Binding Proteins
Show Abstract · Added February 4, 2016
The Rab11 family of small GTPases, along with the Rab11-family interacting proteins (Rab11-FIPs), are critical regulators of intracellular vesicle trafficking and recycling. We have identified a point mutation of Threonine-197 site to an Alanine in Rab11-FIP1A, which causes a dramatic dominant negative phenotype when expressed in HeLa cells. The normally perinuclear distribution of GFP-Rab11-FIP1A was condensed into a membranous cisternum with almost no GFP-Rab11-FIP1A(T197A) remaining outside of this central locus. Also, this condensed GFP-FIP1A(T197A) altered the distribution of proteins in the Rab11a recycling pathway including endogenous Rab11a, Rab11-FIP1C, and transferrin receptor (CD71). Furthermore, this condensed GFP-FIP1A(T197A)-containing structure exhibited little movement in live HeLa cells. Expression of GFP-FIP1A(T197A) caused a strong blockade of transferrin recycling. Treatment of cells expressing GFP-FIP1A(T197A) with nocodazole did not disperse the Rab11a-containing recycling system. We also found that Rab5 and EEA1 were accumulated in membranes by GFP-Rab11-FIP1A but Rab4 was unaffected, suggesting that a direct pathway may exist from early endosomes into the Rab11a-containing recycling system. Our study of a potent inhibitory trafficking mutation in Rab11-FIP1A shows that Rab11-FIP1A associates with and regulates trafficking at an early step in the process of membrane recycling.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Genome-wide Association Studies Identify Genetic Loci Associated With Albuminuria in Diabetes.
Teumer A, Tin A, Sorice R, Gorski M, Yeo NC, Chu AY, Li M, Li Y, Mijatovic V, Ko YA, Taliun D, Luciani A, Chen MH, Yang Q, Foster MC, Olden M, Hiraki LT, Tayo BO, Fuchsberger C, Dieffenbach AK, Shuldiner AR, Smith AV, Zappa AM, Lupo A, Kollerits B, Ponte B, Stengel B, Krämer BK, Paulweber B, Mitchell BD, Hayward C, Helmer C, Meisinger C, Gieger C, Shaffer CM, Müller C, Langenberg C, Ackermann D, Siscovick D, DCCT/EDIC, Boerwinkle E, Kronenberg F, Ehret GB, Homuth G, Waeber G, Navis G, Gambaro G, Malerba G, Eiriksdottir G, Li G, Wichmann HE, Grallert H, Wallaschofski H, Völzke H, Brenner H, Kramer H, Mateo Leach I, Rudan I, Hillege HL, Beckmann JS, Lambert JC, Luan J, Zhao JH, Chalmers J, Coresh J, Denny JC, Butterbach K, Launer LJ, Ferrucci L, Kedenko L, Haun M, Metzger M, Woodward M, Hoffman MJ, Nauck M, Waldenberger M, Pruijm M, Bochud M, Rheinberger M, Verweij N, Wareham NJ, Endlich N, Soranzo N, Polasek O, van der Harst P, Pramstaller PP, Vollenweider P, Wild PS, Gansevoort RT, Rettig R, Biffar R, Carroll RJ, Katz R, Loos RJ, Hwang SJ, Coassin S, Bergmann S, Rosas SE, Stracke S, Harris TB, Corre T, Zeller T, Illig T, Aspelund T, Tanaka T, Lendeckel U, Völker U, Gudnason V, Chouraki V, Koenig W, Kutalik Z, O'Connell JR, Parsa A, Heid IM, Paterson AD, de Boer IH, Devuyst O, Lazar J, Endlich K, Susztak K, Tremblay J, Hamet P, Jacob HJ, Böger CA, Fox CS, Pattaro C, Köttgen A
(2016) Diabetes 65: 803-17
MeSH Terms: Adult, Aged, Albuminuria, Animals, Cathepsin C, Diabetes Mellitus, Experimental, Diabetes Mellitus, Type 2, Diabetic Nephropathies, Female, Gene Knockout Techniques, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Kidney, Kidney Tubules, Male, Middle Aged, Polymorphism, Single Nucleotide, Rats, Receptors, Cell Surface, Sulfotransferases, rab GTP-Binding Proteins
Show Abstract · Added March 14, 2018
Elevated concentrations of albumin in the urine, albuminuria, are a hallmark of diabetic kidney disease and are associated with an increased risk for end-stage renal disease and cardiovascular events. To gain insight into the pathophysiological mechanisms underlying albuminuria, we conducted meta-analyses of genome-wide association studies and independent replication in up to 5,825 individuals of European ancestry with diabetes and up to 46,061 without diabetes, followed by functional studies. Known associations of variants in CUBN, encoding cubilin, with the urinary albumin-to-creatinine ratio (UACR) were confirmed in the overall sample (P = 2.4 × 10(-10)). Gene-by-diabetes interactions were detected and confirmed for variants in HS6ST1 and near RAB38/CTSC. Single nucleotide polymorphisms at these loci demonstrated a genetic effect on UACR in individuals with but not without diabetes. The change in the average UACR per minor allele was 21% for HS6ST1 (P = 6.3 × 10(-7)) and 13% for RAB38/CTSC (P = 5.8 × 10(-7)). Experiments using streptozotocin-induced diabetic Rab38 knockout and control rats showed higher urinary albumin concentrations and reduced amounts of megalin and cubilin at the proximal tubule cell surface in Rab38 knockout versus control rats. Relative expression of RAB38 was higher in tubuli of patients with diabetic kidney disease compared with control subjects. The loci identified here confirm known pathways and highlight novel pathways influencing albuminuria.
© 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
0 Communities
1 Members
0 Resources
22 MeSH Terms
ER trapping reveals Golgi enzymes continually revisit the ER through a recycling pathway that controls Golgi organization.
Sengupta P, Satpute-Krishnan P, Seo AY, Burnette DT, Patterson GH, Lippincott-Schwartz J
(2015) Proc Natl Acad Sci U S A 112: E6752-61
MeSH Terms: Animals, COS Cells, Chlorocebus aethiops, Endoplasmic Reticulum, Golgi Apparatus, HeLa Cells, Humans, Mitosis, Phospholipases A2, Calcium-Independent, Sirolimus, Tacrolimus Binding Protein 1A, Tacrolimus Binding Proteins, rab GTP-Binding Proteins
Show Abstract · Added August 25, 2017
Whether Golgi enzymes remain localized within the Golgi or constitutively cycle through the endoplasmic reticulum (ER) is unclear, yet is important for understanding Golgi dependence on the ER. Here, we demonstrate that the previously reported inefficient ER trapping of Golgi enzymes in a rapamycin-based assay results from an artifact involving an endogenous ER-localized 13-kD FK506 binding protein (FKBP13) competing with the FKBP12-tagged Golgi enzyme for binding to an FKBP-rapamycin binding domain (FRB)-tagged ER trap. When we express an FKBP12-tagged ER trap and FRB-tagged Golgi enzymes, conditions precluding such competition, the Golgi enzymes completely redistribute to the ER upon rapamycin treatment. A photoactivatable FRB-Golgi enzyme, highlighted only in the Golgi, likewise redistributes to the ER. These data establish Golgi enzymes constitutively cycle through the ER. Using our trapping scheme, we identify roles of rab6a and calcium-independent phospholipase A2 (iPLA2) in Golgi enzyme recycling, and show that retrograde transport of Golgi membrane underlies Golgi dispersal during microtubule depolymerization and mitosis.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons.
Cohen MR, Johnson WM, Pilat JM, Kiselar J, DeFrancesco-Lisowitz A, Zigmond RE, Moiseenkova-Bell VY
(2015) Mol Cell Biol 35: 4238-52
MeSH Terms: Animals, Calcium, Calcium Channels, Cell Line, Tumor, Extracellular Signal-Regulated MAP Kinases, HEK293 Cells, Humans, MAP Kinase Signaling System, Nerve Growth Factor, Neurites, Neurogenesis, Neurons, PC12 Cells, Phosphoinositide-3 Kinase Inhibitors, Phosphorylation, RNA Interference, RNA, Small Interfering, Rats, Receptor, trkA, TRPV Cation Channels, rab GTP-Binding Proteins
Show Abstract · Added April 24, 2017
Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca(2+)-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca(2+)-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca(2+) signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca(2+) signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.
0 Communities
1 Members
0 Resources
21 MeSH Terms
PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin-actin interactions.
Hong NH, Qi A, Weaver AM
(2015) J Cell Biol 210: 753-69
MeSH Terms: Actin-Related Protein 2-3 Complex, Actins, Binding Sites, Cell Line, Tumor, Cortactin, Endosomes, Enzyme Activation, HeLa Cells, Humans, Phosphatidylinositol Phosphates, Protein Binding, Protein Structure, Tertiary, RNA Interference, RNA, Small Interfering, Wiskott-Aldrich Syndrome Protein, Neuronal, rab GTP-Binding Proteins
Show Abstract · Added February 15, 2016
Branched actin critically contributes to membrane trafficking by regulating membrane curvature, dynamics, fission, and transport. However, how actin dynamics are controlled at membranes is poorly understood. Here, we identify the branched actin regulator cortactin as a direct binding partner of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and demonstrate that their interaction promotes turnover of late endosomal actin. In vitro biochemical studies indicated that cortactin binds PI(3,5)P2 via its actin filament-binding region. Furthermore, PI(3,5)P2 competed with actin filaments for binding to cortactin, thereby antagonizing cortactin activity. These findings suggest that PI(3,5)P2 formation on endosomes may remove cortactin from endosome-associated branched actin. Indeed, inhibition of PI(3,5)P2 production led to cortactin accumulation and actin stabilization on Rab7(+) endosomes. Conversely, inhibition of Arp2/3 complex activity greatly reduced cortactin localization to late endosomes. Knockdown of cortactin reversed PI(3,5)P2-inhibitor-induced actin accumulation and stabilization on endosomes. These data suggest a model in which PI(3,5)P2 binding removes cortactin from late endosomal branched actin networks and thereby promotes net actin turnover.
© 2015 Hong et al.
1 Communities
1 Members
0 Resources
16 MeSH Terms