Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 1876

Publication Record


PEGylated PLGA Nanoparticle Delivery of Eggmanone for T Cell Modulation: Applications in Rheumatic Autoimmunity.
Haycook CP, Balsamo JA, Glass EB, Williams CH, Hong CC, Major AS, Giorgio TD
(2020) Int J Nanomedicine 15: 1215-1228
MeSH Terms: Animals, Autoimmunity, CD4-Positive T-Lymphocytes, Cytokines, Drug Delivery Systems, Female, Hedgehog Proteins, Immunoglobulin Fragments, Immunologic Factors, Mice, Inbred C57BL, Nanoparticles, Polylactic Acid-Polyglycolic Acid Copolymer, Pyrimidinones, Rheumatic Diseases, T-Lymphocytes, T-Lymphocytes, Helper-Inducer, Thiophenes
Show Abstract · Added March 30, 2020
Background - Helper T cell activity is dysregulated in a number of diseases including those associated with rheumatic autoimmunity. Treatment options are limited and usually consist of systemic immune suppression, resulting in undesirable consequences from compromised immunity. Hedgehog (Hh) signaling has been implicated in the activation of T cells and the formation of the immune synapse, but remains understudied in the context of autoimmunity. Modulation of Hh signaling has the potential to enable controlled immunosuppression but a potential therapy has not yet been developed to leverage this opportunity.
Methods - In this work, we developed biodegradable nanoparticles to enable targeted delivery of eggmanone (Egm), a specific Hh inhibitor, to CD4 T cell subsets. We utilized two FDA-approved polymers, poly(lactic-co-glycolic acid) and polyethylene glycol, to generate hydrolytically degradable nanoparticles. Furthermore, we employed maleimide-thiol mediated conjugation chemistry to decorate nanoparticles with anti-CD4 F(ab') antibody fragments to enable targeted delivery of Egm.
Results - Our novel delivery system achieved a highly specific association with the majority of CD4 T cells present among a complex cell population. Additionally, we have demonstrated antigen-specific inhibition of CD4 T cell responses mediated by nanoparticle-formulated Egm.
Conclusion - This work is the first characterization of Egm's immunomodulatory potential. Importantly, this study also suggests the potential benefit of a biodegradable delivery vehicle that is rationally designed for preferential interaction with a specific immune cell subtype for targeted modulation of Hh signaling.
© 2020 Haycook et al.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Endosomolytic and Tumor-Penetrating Mesoporous Silica Nanoparticles for siRNA/miRNA Combination Cancer Therapy.
Wang Y, Xie Y, Kilchrist KV, Li J, Duvall CL, Oupický D
(2020) ACS Appl Mater Interfaces 12: 4308-4322
MeSH Terms: Animals, Breast Neoplasms, Drug Delivery Systems, Endosomes, Female, Genetic Therapy, Humans, Mice, MicroRNAs, Nanoparticles, RNA, Small Interfering, Silicon Dioxide
Show Abstract · Added March 19, 2020
Combination therapies consisting of multiple short therapeutic RNAs, such as small interfering RNA (siRNA) and microRNA (miRNA), have enormous potential in cancer treatment as they can precisely silence a specific set of oncogenes and target multiple disease-related pathways. However, clinical use of siRNA/miRNA combinations is limited by the availability of safe and efficient systemic delivery systems with sufficient tumor penetrating and endosomal escaping capabilities. This study reports on the development of multifunctional tumor-penetrating mesoporous silica nanoparticles (iMSNs) for simultaneous delivery of siRNA (siPlk1) and miRNA (miR-200c), using encapsulation of a photosensitizer indocyanine green (ICG) to facilitate endosomal escape and surface conjugation of the iRGD peptide to enable deep tumor penetration. Increased cell uptake of the nanoparticles was observed in both 3D tumor spheroids in vitro and in orthotopic MDA-MB-231 breast tumors in vivo. Using a galectin-8 recruitment assay, we showed that reactive oxygen species generated by ICG upon light irradiation functioned as an endosomolytic stimulus that caused release of the siRNA/miRNA combination from endosomes. Co-delivery of the therapeutic RNAs displayed combined cell killing activity in cancer cells. Systemic intravenous treatment of metastatic breast cancer with the iMSNs loaded with siPlk1 and miR-200c resulted in a significant suppression of the primary tumor growth and in marked reduction of metastasis upon short light irradiation of the primary tumor. This work demonstrates that siRNA-miRNA combination assisted by the photodynamic effect and tumor penetrating delivery system may provide a promising approach for metastatic cancer treatment.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Roux-en-Y gastric bypass surgery improves hepatic glucose metabolism and reduces plasma kisspeptin levels in morbidly obese patients with type 2 diabetes.
Flynn CR, Albaugh VL, Tamboli RA, Gregory JM, Bosompem A, Sidani RM, Winnick JJ
(2020) Am J Physiol Gastrointest Liver Physiol 318: G370-G374
MeSH Terms: Adolescent, Adult, Anastomosis, Roux-en-Y, Blood Glucose, Diabetes Mellitus, Type 2, Female, Glucagon, Glucose, Humans, Insulin, Kisspeptins, Liver, Male, Middle Aged, Obesity, Morbid, Treatment Outcome, Young Adult
Show Abstract · Added November 12, 2019
Roux-en-Y gastric bypass surgery (RYGB) is known to improve whole-body glucose metabolism in patients with type 2 diabetes (T2D), although the mechanisms are not entirely clear and are likely multifactorial. The aim of this study was to assess fasting hepatic glucose metabolism and other markers of metabolic activity before and after RYGB in patients with and without T2D. Methods: Metabolic characteristics of patients who are obese with T2D were compared with those without the disease (non-T2D) before and 1 and 6 mo after RYGB. Fasting plasma insulin and the insulin:glucagon ratio were markedly reduced as early as 1 mo after RYGB in both patients with T2D and without T2D. Despite this reduction, endogenous glucose production and fasting plasma glucose levels were lower in both groups after RYGB, with the reductions being much larger in T2D. Plasma kisspeptin, an inhibitor of insulin secretion, was reduced only in T2D after surgery. Improved hepatic glucose metabolism and lower plasma kisspeptin in T2D after RYGB may link improved hepatic function with enhanced insulin responsiveness after surgery. Our manuscript is the first, to the best of our knowledge, to present data showing that Roux-en-Y gastric bypass surgery (RYGB) lowers fasting kisspeptin levels in patients who are obese with type 2 diabetes. This lowering of kisspeptin is important because it could link improvements in liver glucose metabolism after RYGB with increased insulin responsiveness also seen after surgery.
0 Communities
2 Members
0 Resources
17 MeSH Terms
CD8 T cells regulate liver injury in obesity-related nonalcoholic fatty liver disease.
Breuer DA, Pacheco MC, Washington MK, Montgomery SA, Hasty AH, Kennedy AJ
(2020) Am J Physiol Gastrointest Liver Physiol 318: G211-G224
MeSH Terms: Animals, CD8-Positive T-Lymphocytes, Hepatic Stellate Cells, Hepatitis, Humans, Hyperlipidemias, Interleukin-10, Liver, Male, Mice, Mice, Inbred C57BL, Mice, Obese, Non-alcoholic Fatty Liver Disease, Obesity, Receptors, LDL
Show Abstract · Added March 3, 2020
Nonalcoholic steatohepatitis (NASH) has increased in Western countries due to the prevalence of obesity. Current interests are aimed at identifying the type and function of immune cells that infiltrate the liver and key factors responsible for mediating their recruitment and activation in NASH. We investigated the function and phenotype of CD8 T cells under obese and nonobese NASH conditions. We found an elevation in CD8 staining in livers from obese human subjects with NASH and cirrhosis that positively correlated with α-smooth muscle actin, a marker of hepatic stellate cell (HSC) activation. CD8 T cells were elevated 3.5-fold in the livers of obese and hyperlipidemic NASH mice compared with obese hepatic steatosis mice. Isolated hepatic CD8 T cells from these mice expressed a cytotoxic IL-10-expressing phenotype, and depletion of CD8 T cells led to significant reductions in hepatic inflammation, HSC activation, and macrophage accumulation. Furthermore, hepatic CD8 T cells from obese and hyperlipidemic NASH mice activated HSCs in vitro and in vivo. Interestingly, in the lean NASH mouse model, depletion and knockdown of CD8 T cells did not impact liver inflammation or HSC activation. We demonstrated that under obese/hyperlipidemia conditions, CD8 T cell are key regulators of the progression of NASH, while under nonobese conditions they play a minimal role in driving the disease. Thus, therapies targeting CD8 T cells may be a novel approach for treatment of obesity-associated NASH. Our study demonstrates that CD8 T cells are the primary hepatic T cell population, are elevated in obese models of NASH, and directly activate hepatic stellate cells. In contrast, we find CD8 T cells from lean NASH models do not regulate NASH-associated inflammation or stellate cell activation. Thus, for the first time to our knowledge, we demonstrate that hepatic CD8 T cells are key players in obesity-associated NASH.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Increased reporting of fatal hepatitis associated with immune checkpoint inhibitors.
Vozy A, De Martin E, Johnson DB, Lebrun-Vignes B, Moslehi JJ, Salem JE
(2019) Eur J Cancer 123: 112-115
MeSH Terms: Adolescent, Adult, Aged, Aged, 80 and over, Antibodies, Monoclonal, Humanized, Antineoplastic Agents, Immunological, B7-H1 Antigen, CTLA-4 Antigen, Chemical and Drug Induced Liver Injury, Child, Databases, Factual, Female, Hepatitis, Autoimmune, Humans, Ipilimumab, Male, Massive Hepatic Necrosis, Middle Aged, Neoplasms, Nivolumab, Programmed Cell Death 1 Receptor, World Health Organization, Young Adult
Added November 12, 2019
0 Communities
1 Members
0 Resources
23 MeSH Terms
An anionic, endosome-escaping polymer to potentiate intracellular delivery of cationic peptides, biomacromolecules, and nanoparticles.
Evans BC, Fletcher RB, Kilchrist KV, Dailing EA, Mukalel AJ, Colazo JM, Oliver M, Cheung-Flynn J, Brophy CM, Tierney JW, Isenberg JS, Hankenson KD, Ghimire K, Lander C, Gersbach CA, Duvall CL
(2019) Nat Commun 10: 5012
MeSH Terms: Acrylates, Animals, Anions, Cations, Cell Line, Cells, Cultured, Drug Delivery Systems, Endosomes, HEK293 Cells, Humans, Intracellular Space, MCF-7 Cells, Macromolecular Substances, Mice, NIH 3T3 Cells, Nanoparticles, Peptides, Polymers, RAW 264.7 Cells, Rats, Reproducibility of Results
Show Abstract · Added November 7, 2019
Peptides and biologics provide unique opportunities to modulate intracellular targets not druggable by conventional small molecules. Most peptides and biologics are fused with cationic uptake moieties or formulated into nanoparticles to facilitate delivery, but these systems typically lack potency due to low uptake and/or entrapment and degradation in endolysosomal compartments. Because most delivery reagents comprise cationic lipids or polymers, there is a lack of reagents specifically optimized to deliver cationic cargo. Herein, we demonstrate the utility of the cytocompatible polymer poly(propylacrylic acid) (PPAA) to potentiate intracellular delivery of cationic biomacromolecules and nano-formulations. This approach demonstrates superior efficacy over all marketed peptide delivery reagents and enhances delivery of nucleic acids and gene editing ribonucleoproteins (RNPs) formulated with both commercially-available and our own custom-synthesized cationic polymer delivery reagents. These results demonstrate the broad potential of PPAA to serve as a platform reagent for the intracellular delivery of cationic cargo.
0 Communities
3 Members
0 Resources
21 MeSH Terms
Aerobic exercise training improves hepatic and muscle insulin sensitivity, but reduces splanchnic glucose uptake in obese humans with type 2 diabetes.
Gregory JM, Muldowney JA, Engelhardt BG, Tyree R, Marks-Shulman P, Silver HJ, Donahue EP, Edgerton DS, Winnick JJ
(2019) Nutr Diabetes 9: 25
MeSH Terms: Adult, Diabetes Mellitus, Type 2, Exercise, Female, Glucose, Glucose Clamp Technique, Glucose Tolerance Test, Humans, Insulin Resistance, Liver, Male, Middle Aged, Muscle, Skeletal, Obesity
Show Abstract · Added September 3, 2019
BACKGROUND - Aerobic exercise training is known to have beneficial effects on whole-body glucose metabolism in people with type 2 diabetes (T2D). The responses of the liver to such training are less well understood. The purpose of this study was to determine the effect of aerobic exercise training on splanchnic glucose uptake (SGU) and insulin-mediated suppression of endogenous glucose production (EGP) in obese subjects with T2D.
METHODS - Participants included 11 obese humans with T2D, who underwent 15 ± 2 weeks of aerobic exercise training (AEX; n = 6) or remained sedentary for 15 ± 1 weeks (SED; n = 5). After an initial screening visit, each subject underwent an oral glucose load clamp and an isoglycemic/two-step (20 and 40 mU/m/min) hyperinsulinemic clamp (ISO-clamp) to assess SGU and insulin-mediated suppression of EGP, respectively. After the intervention period, both tests were repeated.
RESULTS - In AEX, the ability of insulin to suppress EGP was improved during both the low (69 ± 9 and 80 ± 6% suppression; pre-post, respectively; p < 0.05) and high (67 ± 6 and 82 ± 4% suppression, respectively; p < 0.05) insulin infusion periods. Despite markedly improved muscle insulin sensitivity, SGU was reduced in AEX after training (22.9 ± 3.3 and 9.1 ± 6.0 g pre-post in AEX, respectively; p < 0.05).
CONCLUSIONS - In obese T2D subjects, exercise training improves whole-body glucose metabolism, in part, by improving insulin-mediated suppression of EGP and enhancing muscle glucose uptake, which occur despite reduced SGU during an oral glucose challenge.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Targeting Gut Microbiome Interactions in Service-Related Gastrointestinal and Liver Diseases of Veterans.
Bajaj JS, Sharma A, Dudeja PK, Collaborators
(2019) Gastroenterology 157: 1180-1183.e1
MeSH Terms: Biomedical Research, Gastroenterology, Gastrointestinal Diseases, Gastrointestinal Microbiome, Humans, Liver Diseases, United States, United States Department of Veterans Affairs, Veterans Health, Veterans Health Services
Added October 29, 2019
0 Communities
1 Members
0 Resources
10 MeSH Terms
Fully automatic liver attenuation estimation combing CNN segmentation and morphological operations.
Huo Y, Terry JG, Wang J, Nair S, Lasko TA, Freedman BI, Carr JJ, Landman BA
(2019) Med Phys 46: 3508-3519
MeSH Terms: Deep Learning, Humans, Image Processing, Computer-Assisted, Liver, Non-alcoholic Fatty Liver Disease, Tomography, X-Ray Computed
Show Abstract · Added July 18, 2019
PURPOSE - Manually tracing regions of interest (ROIs) within the liver is the de facto standard method for measuring liver attenuation on computed tomography (CT) in diagnosing nonalcoholic fatty liver disease (NAFLD). However, manual tracing is resource intensive. To address these limitations and to expand the availability of a quantitative CT measure of hepatic steatosis, we propose the automatic liver attenuation ROI-based measurement (ALARM) method for automated liver attenuation estimation.
METHODS - The ALARM method consists of two major stages: (a) deep convolutional neural network (DCNN)-based liver segmentation and (b) automated ROI extraction. First, liver segmentation was achieved using our previously developed SS-Net. Then, a single central ROI (center-ROI) and three circles ROI (periphery-ROI) were computed based on liver segmentation and morphological operations. The ALARM method is available as an open source Docker container (https://github.com/MASILab/ALARM).
RESULTS - Two hundred and forty-six subjects with 738 abdomen CT scans from the African American-Diabetes Heart Study (AA-DHS) were used for external validation (testing), independent from the training and validation cohort (100 clinically acquired CT abdominal scans). From the correlation analyses, the proposed ALARM method achieved Pearson correlations = 0.94 with manual estimation on liver attenuation estimations. When evaluating the ALARM method for detection of nonalcoholic fatty liver disease (NAFLD) using the traditional cut point of < 40 HU, the center-ROI achieved substantial agreements (Kappa = 0.79) with manual estimation, while the periphery-ROI method achieved "excellent" agreement (Kappa = 0.88) with manual estimation. The automated ALARM method had reduced variability compared to manual measurements as indicated by a smaller standard deviation.
CONCLUSIONS - We propose a fully automated liver attenuation estimation method termed ALARM by combining DCNN and morphological operations, which achieved "excellent" agreement with manual estimation for fatty liver detection. The entire pipeline is implemented as a Docker container which enables users to achieve liver attenuation estimation in five minutes per CT exam.
© 2019 American Association of Physicists in Medicine.
0 Communities
2 Members
0 Resources
6 MeSH Terms
Genome-wide enhancer annotations differ significantly in genomic distribution, evolution, and function.
Benton ML, Talipineni SC, Kostka D, Capra JA
(2019) BMC Genomics 20: 511
MeSH Terms: Cell Line, Databases, Genetic, Enhancer Elements, Genetic, Evolution, Molecular, Gene Expression Regulation, Genomics, Humans, Liver, Molecular Sequence Annotation, Myocardium
Show Abstract · Added March 3, 2020
BACKGROUND - Non-coding gene regulatory enhancers are essential to transcription in mammalian cells. As a result, a large variety of experimental and computational strategies have been developed to identify cis-regulatory enhancer sequences. Given the differences in the biological signals assayed, some variation in the enhancers identified by different methods is expected; however, the concordance of enhancers identified by different methods has not been comprehensively evaluated. This is critically needed, since in practice, most studies consider enhancers identified by only a single method. Here, we compare enhancer sets from eleven representative strategies in four biological contexts.
RESULTS - All sets we evaluated overlap significantly more than expected by chance; however, there is significant dissimilarity in their genomic, evolutionary, and functional characteristics, both at the element and base-pair level, within each context. The disagreement is sufficient to influence interpretation of candidate SNPs from GWAS studies, and to lead to disparate conclusions about enhancer and disease mechanisms. Most regions identified as enhancers are supported by only one method, and we find limited evidence that regions identified by multiple methods are better candidates than those identified by a single method. As a result, we cannot recommend the use of any single enhancer identification strategy in all settings.
CONCLUSIONS - Our results highlight the inherent complexity of enhancer biology and identify an important challenge to mapping the genetic architecture of complex disease. Greater appreciation of how the diverse enhancer identification strategies in use today relate to the dynamic activity of gene regulatory regions is needed to enable robust and reproducible results.
0 Communities
1 Members
0 Resources
MeSH Terms