Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 223

Publication Record

Connections

Isolevuglandins and cardiovascular disease.
Davies SS, May-Zhang LS
(2018) Prostaglandins Other Lipid Mediat 139: 29-35
MeSH Terms: Arachidonic Acid, Atherosclerosis, Cardiovascular Diseases, Humans, Lipid Peroxidation, Lipids
Show Abstract · Added October 26, 2018
Isolevuglandins are 4-ketoaldehydes formed by peroxidation of arachidonic acid. Isolevuglandins react rapidly with primary amines including the lysyl residues of proteins to form irreversible covalent modifications. This review highlights evidence for the potential role of isolevuglandin modification in the disease processes, especially atherosclerosis, and some of the tools including small molecule dicarbonyl scavengers utilized to assess their contributions to disease.
Copyright © 2018. Published by Elsevier Inc.
1 Communities
2 Members
0 Resources
6 MeSH Terms
Oxidative stress increases M1dG, a major peroxidation-derived DNA adduct, in mitochondrial DNA.
Wauchope OR, Mitchener MM, Beavers WN, Galligan JJ, Camarillo JM, Sanders WD, Kingsley PJ, Shim HN, Blackwell T, Luong T, deCaestecker M, Fessel JP, Marnett LJ
(2018) Nucleic Acids Res 46: 3458-3467
MeSH Terms: Animals, Bone Morphogenetic Protein Receptors, Type II, DNA Adducts, DNA, Mitochondrial, Electron Transport, Endothelial Cells, Gene Expression Regulation, Humans, Hypertension, Pulmonary, Lipid Peroxidation, Mice, Mice, Transgenic, Mitochondria, Mutagenesis, Oxidants, Oxidative Stress, Purine Nucleosides, Reactive Oxygen Species, Superoxides
Show Abstract · Added March 14, 2018
Reactive oxygen species (ROS) are formed in mitochondria during electron transport and energy generation. Elevated levels of ROS lead to increased amounts of mitochondrial DNA (mtDNA) damage. We report that levels of M1dG, a major endogenous peroxidation-derived DNA adduct, are 50-100-fold higher in mtDNA than in nuclear DNA in several different human cell lines. Treatment of cells with agents that either increase or decrease mitochondrial superoxide levels leads to increased or decreased levels of M1dG in mtDNA, respectively. Sequence analysis of adducted mtDNA suggests that M1dG residues are randomly distributed throughout the mitochondrial genome. Basal levels of M1dG in mtDNA from pulmonary microvascular endothelial cells (PMVECs) from transgenic bone morphogenetic protein receptor 2 mutant mice (BMPR2R899X) (four adducts per 106 dG) are twice as high as adduct levels in wild-type cells. A similar increase was observed in mtDNA from heterozygous null (BMPR2+/-) compared to wild-type PMVECs. Pulmonary arterial hypertension is observed in the presence of BMPR2 signaling disruptions, which are also associated with mitochondrial dysfunction and oxidant injury to endothelial tissue. Persistence of M1dG adducts in mtDNA could have implications for mutagenesis and mitochondrial gene expression, thereby contributing to the role of mitochondrial dysfunction in diseases.
0 Communities
3 Members
0 Resources
19 MeSH Terms
From the Cover: Manganese and Rotenone-Induced Oxidative Stress Signatures Differ in iPSC-Derived Human Dopamine Neurons.
Neely MD, Davison CA, Aschner M, Bowman AB
(2017) Toxicol Sci 159: 366-379
MeSH Terms: Cell Differentiation, Cells, Cultured, Dopaminergic Neurons, Humans, Induced Pluripotent Stem Cells, Lipid Peroxidation, Manganese, Oxidative Stress, Reactive Nitrogen Species, Reactive Oxygen Species, Rotenone
Show Abstract · Added April 11, 2018
Parkinson's disease (PD) is the result of complex interactions between genetic and environmental factors. Two chemically distinct environmental stressors relevant to PD are the metal manganese and the pesticide rotenone. Both are thought to exert neurotoxicity at least in part via oxidative stress resulting from impaired mitochondrial activity. Identifying shared mechanism of action may reveal clues towards an understanding of the mechanisms underlying PD pathogenesis. Here we compare the effects of manganese and rotenone in human-induced pluripotent stem cells-derived postmitotic mesencephalic dopamine neurons by assessing several different oxidative stress endpoints. Manganese, but not rotenone caused a concentration and time-dependent increase in intracellular reactive oxygen/nitrogen species measured by quantifying the fluorescence of oxidized chloromethyl 2',7'-dichlorodihydrofluorescein diacetate (DCF) assay. In contrast, rotenone but not manganese caused an increase in cellular isoprostane levels, an indicator of lipid peroxidation. Manganese and rotenone both caused an initial decrease in cellular reduced glutathione; however, glutathione levels remained low in neurons treated with rotenone for 24 h but recovered in manganese-exposed cells. Neurite length, a sensitive indicator of overall neuronal health was adversely affected by rotenone, but not manganese. Thus, our observations suggest that the cellular oxidative stress evoked by these 2 agents is distinct yielding unique oxidative stress signatures across outcome measures. The protective effect of rasagiline, a compound used in the clinic for PD, had negligible impact on any of oxidative stress outcome measures except a subtle significant decrease in manganese-dependent production of reactive oxygen/nitrogen species detected by the DCF assay.
© The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Protein Modification by Endogenously Generated Lipid Electrophiles: Mitochondria as the Source and Target.
Beavers WN, Rose KL, Galligan JJ, Mitchener MM, Rouzer CA, Tallman KA, Lamberson CR, Wang X, Hill S, Ivanova PT, Brown HA, Zhang B, Porter NA, Marnett LJ
(2017) ACS Chem Biol 12: 2062-2069
MeSH Terms: Animals, Lipid Peroxidation, Lipids, Mitochondria, Molecular Structure, Protein Processing, Post-Translational, Proteins, Signal Transduction
Show Abstract · Added April 22, 2018
Determining the impact of lipid electrophile-mediated protein damage that occurs during oxidative stress requires a comprehensive analysis of electrophile targets adducted under pathophysiological conditions. Incorporation of ω-alkynyl linoleic acid into the phospholipids of macrophages prior to activation by Kdo-lipid A, followed by protein extraction, click chemistry, and streptavidin affinity capture, enabled a systems-level survey of proteins adducted by lipid electrophiles generated endogenously during the inflammatory response. Results revealed a dramatic enrichment for membrane and mitochondrial proteins as targets for adduction. A marked decrease in adduction in the presence of MitoTEMPO demonstrated a primary role for mitochondrial superoxide in electrophile generation and indicated an important role for mitochondria as both a source and target of lipid electrophiles, a finding that has not been revealed by prior studies using exogenously provided electrophiles.
0 Communities
1 Members
0 Resources
MeSH Terms
Isolevuglandins as a gauge of lipid peroxidation in human tumors.
Yan HP, Roberts LJ, Davies SS, Pohlmann P, Parl FF, Estes S, Maeng J, Parker B, Mernaugh R
(2017) Free Radic Biol Med 106: 62-68
MeSH Terms: Antibodies, Carcinogenesis, Cell Line, Tumor, Cell Proliferation, Free Radicals, Humans, Lipid Peroxidation, Neoplasms, Oxidative Stress, Phospholipids, Prostaglandin-Endoperoxide Synthases, Prostaglandins E, Reactive Oxygen Species
Show Abstract · Added July 17, 2019
The cellular production of free radicals or reactive oxygen species (ROS) can lead to protein, lipid or DNA modifications and tumor formation. The cellular lipids undergo structural changes through the actions of enzymes (e.g. cyclooxygenases) or free radicals to form a class of compounds called Isolevuglandins (IsoLGs). The recruitment and continued exposure of tissue to ROS and IsoLGs causes increased cell proliferation, mutagenesis, loss of normal cell function and angiogenesis. The elevated concentration of ROS in cancerous tissues suggests that these mediators play an important role in cancer development. We hypothesized that tumors with elevated ROS levels would similarly possess an increased concentration of IsoLGs when compared with normal tissue. Using D11, an ScFv recombinant antibody specific for IsoLGs, we utilized immunohistochemistry to visualize the presence of IsoLG in human tumors compared to normal adjacent tissue (NAT) to the same tumor. We found that IsoLG concentrations were elevated in human breast, colon, kidney, liver, lung, pancreatic and tongue tumor cells when compared to NAT and believe that IsoLGs can be used as a gauge indicative of lipid peroxidation in tumors.
Copyright © 2017 Elsevier Inc. All rights reserved.
1 Communities
1 Members
0 Resources
MeSH Terms
Reactive gamma-ketoaldehydes as novel activators of hepatic stellate cells in vitro.
Longato L, Andreola F, Davies SS, Roberts JL, Fusai G, Pinzani M, Moore K, Rombouts K
(2017) Free Radic Biol Med 102: 162-173
MeSH Terms: Aldehydes, Apoptosis, Autophagy, Cell Proliferation, Hepatic Stellate Cells, Humans, Lipid Peroxidation, Liver, Liver Cirrhosis, NF-kappa B, Oxidative Stress, Prostaglandins E, Reactive Oxygen Species
Show Abstract · Added July 17, 2019
AIMS - Products of lipid oxidation, such as 4-hydroxynonenal (4-HNE), are key activators of hepatic stellate cells (HSC) to a pro-fibrogenic phenotype. Isolevuglandins (IsoLG) are a family of acyclic γ-ketoaldehydes formed through oxidation of arachidonic acid or as by-products of the cyclooxygenase pathway. IsoLGs are highly reactive aldehydes which are efficient at forming protein adducts and cross-links at concentrations 100-fold lower than 4-hydroxynonenal. Since the contribution of IsoLGs to liver injury has not been studied, we synthesized 15-E-IsoLG and used it to investigate whether IsoLG could induce activation of HSC.
RESULTS - Primary human HSC were exposed to 15-E-IsoLG for up to 48h. Exposure to 5μM 15-E-IsoLG in HSCs promoted cytotoxicity and apoptosis. At non-cytotoxic doses (50 pM-500nM) 15-E-IsoLG promoted HSC activation, indicated by increased expression of α-SMA, sustained activation of ERK and JNK signaling pathways, and increased mRNA and/or protein expression of cytokines and chemokines, which was blocked by inhibitors of JNK and NF-kB. In addition, IsoLG promoted formation of reactive oxygen species, and induced an early activation of ER stress, followed by autophagy. Inhibition of autophagy partially reduced the pro-inflammatory effects of IsoLG, suggesting that it might serve as a cytoprotective response.
INNOVATION - This study is the first to describe the biological effects of IsoLG in primary HSC, the main drivers of hepatic fibrosis.
CONCLUSIONS - IsoLGs represent a newly identified class of activators of HSC in vitro, which are biologically active at concentrations as low as 500 pM, and are particularly effective at promoting a pro-inflammatory response and autophagy.
Copyright © 2016. Published by Elsevier Inc.
1 Communities
1 Members
0 Resources
MeSH Terms
Scavengers of reactive γ-ketoaldehydes extend Caenorhabditis elegans lifespan and healthspan through protein-level interactions with SIR-2.1 and ETS-7.
Nguyen TT, Caito SW, Zackert WE, West JD, Zhu S, Aschner M, Fessel JP, Roberts LJ
(2016) Aging (Albany NY) 8: 1759-80
MeSH Terms: Aging, Animals, Animals, Genetically Modified, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Lipid Peroxidation, Longevity, Proto-Oncogene Proteins c-ets, Sirtuins
Show Abstract · Added September 16, 2016
Isoketals (IsoKs) are highly reactive γ-ketoaldehyde products of lipid peroxidation that covalently adduct lysine side chains in proteins, impairing their function. Using C. elegans as a model organism, we sought to test the hypothesis that IsoKs contribute to molecular aging through adduction and inactivation of specific protein targets, and that this process can be abrogated using salicylamine (SA), a selective IsoK scavenger. Treatment with SA extends adult nematode longevity by nearly 56% and prevents multiple deleterious age-related biochemical and functional changes. Testing of a variety of molecular targets for SA's action revealed the sirtuin SIR-2.1 as the leading candidate. When SA was administered to a SIR-2.1 knockout strain, the effects on lifespan and healthspan extension were abolished. The SIR-2.1-dependent effects of SA were not mediated by large changes in gene expression programs or by significant changes in mitochondrial function. However, expression array analysis did show SA-dependent regulation of the transcription factor ets-7 and associated genes. In ets-7 knockout worms, SA's longevity effects were abolished, similar to sir-2.1 knockouts. However, SA dose-dependently increases ets-7 mRNA levels in non-functional SIR-2.1 mutant, suggesting that both are necessary for SA's complete lifespan and healthspan extension.
0 Communities
2 Members
0 Resources
9 MeSH Terms
Nuclear Oxidation of a Major Peroxidation DNA Adduct, M1dG, in the Genome.
Wauchope OR, Beavers WN, Galligan JJ, Mitchener MM, Kingsley PJ, Marnett LJ
(2015) Chem Res Toxicol 28: 2334-42
MeSH Terms: Adenine, Animals, Cell Nucleus, Cells, Cultured, Chromatography, Liquid, DNA Adducts, HEK293 Cells, Humans, Lipid Peroxidation, Macrophages, Mass Spectrometry, Oxidation-Reduction, Purine Nucleosides
Show Abstract · Added February 22, 2016
Chronic inflammation results in increased production of reactive oxygen species (ROS), which can oxidize cellular molecules including lipids and DNA. Our laboratory has shown that 3-(2-deoxy-β-d-erythro-pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one (M1dG) is the most abundant DNA adduct formed from the lipid peroxidation product, malondialdehyde, or the DNA peroxidation product, base propenal. M1dG is mutagenic in bacterial and mammalian cells and is repaired via the nucleotide excision repair system. Here, we report that M1dG levels in intact DNA were increased from basal levels of 1 adduct per 10(8) nucleotides to 2 adducts per 10(6) nucleotides following adenine propenal treatment of RKO, HEK293, or HepG2 cells. We also found that M1dG in genomic DNA was oxidized in a time-dependent fashion to a single product, 6-oxo-M1dG (to ∼ 5 adducts per 10(7) nucleotides), and that this oxidation correlated with a decline in M1dG levels. Investigations in RAW264.7 macrophages indicate the presence of high basal levels of M1dG (1 adduct per 10(6) nucleotides) and the endogenous formation of 6-oxo-M1dG. This is the first report of the production of 6-oxo-M1dG in genomic DNA in intact cells, and it has significant implications for understanding the role of inflammation in DNA damage, mutagenesis, and repair.
0 Communities
2 Members
0 Resources
13 MeSH Terms
Clinical Relevance of Biomarkers of Oxidative Stress.
Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T, Gasparovic AC, Cuadrado A, Weber D, Poulsen HE, Grune T, Schmidt HH, Ghezzi P
(2015) Antioxid Redox Signal 23: 1144-70
MeSH Terms: Animals, Biomarkers, DNA Damage, Glycation End Products, Advanced, Humans, Lipid Peroxidation, Lipoproteins, LDL, Malondialdehyde, Oxidative Stress, Protein Carbonylation, Reactive Oxygen Species
Show Abstract · Added October 8, 2015
SIGNIFICANCE - Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids.
RECENT ADVANCES - An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance.
CRITICAL ISSUES - The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use.
FUTURE DIRECTIONS - Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker.
2 Communities
1 Members
0 Resources
11 MeSH Terms
Novel approaches to identify protein adducts produced by lipid peroxidation.
Codreanu SG, Liebler DC
(2015) Free Radic Res 49: 881-7
MeSH Terms: Chromatography, Liquid, Humans, Lipid Peroxidation, Protein Processing, Post-Translational, Proteome, Proteomics, Tandem Mass Spectrometry
Show Abstract · Added February 22, 2016
Lipid peroxidation is responsible for the generation of chemically reactive, diffusible lipid-derived electrophiles (LDEs) that covalently modify cellular protein targets. These protein modifications modulate protein activity and macromolecular interactions and induce adaptive and toxic cell signaling. Protein modifications induced by LDEs can be identified and quantified by affinity enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based techniques. Tagged LDE analog probes with different electrophilic groups can be covalently captured by click chemistry for LC-MS/MS analyses, thereby enabling in-depth studies of proteome damage at the protein and peptide sequence levels. Conversely, click-reactive, thiol-directed probes can be used to evaluate thiol damage caused by LDE by difference. These analytical approaches permit systematic study of the dynamics of protein damage caused by LDE and mechanisms by which oxidative stress contribute to toxicity and diseases.
0 Communities
1 Members
0 Resources
7 MeSH Terms