Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 14

Publication Record

Connections

Increased breadth of HIV-1 neutralization achieved by diverse antibody clones each with limited neutralization breadth.
Chukwuma VU, Kose N, Sather DN, Sapparapu G, Falk R, King H, Singh V, Lampley R, Malherbe DC, Ditto NT, Sullivan JT, Barnes T, Doranz BJ, Labranche CC, Montefiori DC, Kalams SA, Haigwood NL, Crowe JE
(2018) PLoS One 13: e0209437
MeSH Terms: Antibodies, Neutralizing, Antibody Diversity, B-Lymphocytes, Cells, Cultured, Epitope Mapping, Epitopes, HIV Antibodies, HIV Infections, HIV-1, Humans, Hybridomas, Neutralization Tests, env Gene Products, Human Immunodeficiency Virus
Show Abstract · Added March 31, 2019
Broadly neutralizing antibodies (bNAbs) are rarely elicited by current human immunodeficiency virus type 1 (HIV-1) vaccine designs, but the presence of bNAbs in naturally infected individuals may be associated with high plasma viral loads, suggesting that the magnitude, duration, and diversity of viral exposure may contribute to the development of bNAbs. Here, we report the isolation and characterization of a panel of human monoclonal antibodies (mAbs) from two subjects who developed broadly neutralizing autologous antibody responses during HIV-1 infection. In both subjects, we identified collections of mAbs that exhibited specificity only to a few autologous envelopes (Envs), with some mAbs exhibiting specificity only to a subset of Envs within the quasispecies of a particular sample at one time point. Neutralizing antibodies (NAbs) isolated from these subjects mapped mostly to epitopes in the Env V3 loop region and the CD4 binding site. None of the individual neutralizing mAbs recovered exhibited the cumulative breadth of neutralization present in the serum of the subjects. Surprisingly, however, the activity of polyclonal mixtures comprising individual mAbs that each possessed limited neutralizing activity, could achieve increased breadth of neutralizing activity against autologous isolates. While a single broadly neutralizing antibody targeting one epitope can mediate neutralization breadth, the findings presented here suggest that a cooperative polyclonal process mediated by diverse antibodies with more limited breadth targeting multiple epitopes also can achieve neutralization breadth against HIV-1.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Vaccine Induction of Heterologous Tier 2 HIV-1 Neutralizing Antibodies in Animal Models.
Saunders KO, Verkoczy LK, Jiang C, Zhang J, Parks R, Chen H, Housman M, Bouton-Verville H, Shen X, Trama AM, Scearce R, Sutherland L, Santra S, Newman A, Eaton A, Xu K, Georgiev IS, Joyce MG, Tomaras GD, Bonsignori M, Reed SG, Salazar A, Mascola JR, Moody MA, Cain DW, Centlivre M, Zurawski S, Zurawski G, Erickson HP, Kwong PD, Alam SM, Levy Y, Montefiori DC, Haynes BF
(2017) Cell Rep 21: 3681-3690
MeSH Terms: AIDS Vaccines, Amino Acid Sequence, Animals, Antibodies, Neutralizing, Disease Models, Animal, Epitopes, HIV Antibodies, HIV-1, Immunization, Macaca mulatta, Mice, Polysaccharides, Protein Multimerization, Rabbits, env Gene Products, Human Immunodeficiency Virus
Show Abstract · Added March 14, 2018
The events required for the induction of broad neutralizing antibodies (bnAbs) following HIV-1 envelope (Env) vaccination are unknown, and their induction in animal models as proof of concept would be critical. Here, we describe the induction of plasma antibodies capable of neutralizing heterologous primary (tier 2) HIV-1 strains in one macaque and two rabbits. Env immunogens were designed to induce CD4 binding site (CD4bs) bnAbs, but surprisingly, the macaque developed V1V2-glycan bnAbs. Env immunization of CD4bs bnAb heavy chain rearrangement (VDJ) knockin mice similarly induced V1V2-glycan neutralizing antibodies (nAbs), wherein the human CD4bs V chains were replaced with mouse rearrangements bearing diversity region (D)-D fusions, creating antibodies with long, tyrosine-rich HCDR3s. Our results show that Env vaccination can elicit broad neutralization of tier 2 HIV-1, demonstrate that V1V2-glycan bnAbs are more readily induced than CD4bs bnAbs, and define V replacement and diversity region fusion as potential mechanisms for generating V1V2-glycan bnAb site antibodies.
Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Soluble Prefusion Closed DS-SOSIP.664-Env Trimers of Diverse HIV-1 Strains.
Joyce MG, Georgiev IS, Yang Y, Druz A, Geng H, Chuang GY, Kwon YD, Pancera M, Rawi R, Sastry M, Stewart-Jones GBE, Zheng A, Zhou T, Choe M, Van Galen JG, Chen RE, Lees CR, Narpala S, Chambers M, Tsybovsky Y, Baxa U, McDermott AB, Mascola JR, Kwong PD
(2017) Cell Rep 21: 2992-3002
MeSH Terms: AIDS Vaccines, Enzyme-Linked Immunosorbent Assay, HIV-1, Microscopy, Electron, env Gene Products, Human Immunodeficiency Virus
Show Abstract · Added March 14, 2018
The elicitation of autologous neutralizing responses by immunization with HIV-1 envelope (Env) trimers conformationally stabilized in a prefusion closed state has generated considerable interest in the HIV-1 vaccine field. However, soluble prefusion closed Env trimers have been produced from only a handful of HIV-1 strains, limiting their utility as vaccine antigens and B cell probes. Here, we report the engineering from 81 HIV-1 strains of soluble, fully cleaved, prefusion Env trimers with appropriate antigenicity. We used a 96-well expression-screening format to assess the ability of artificial disulfides and Ile559Pro substitution (DS-SOSIP) to produce soluble cleaved-Env trimers; from 180 Env strains, 20 yielded prefusion closed trimers. We also created chimeras, by utilizing structure-based design to incorporate select regions from the well-behaved BG505 strain; from 180 Env strains, 78 DS-SOSIP-stabilized chimeras, including 61 additional strains, yielded prefusion closed trimers. Structure-based design thus enables the production of prefusion closed HIV-1-Env trimers from dozens of diverse strains.
Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
5 MeSH Terms
Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop.
Cale EM, Gorman J, Radakovich NA, Crooks ET, Osawa K, Tong T, Li J, Nagarajan R, Ozorowski G, Ambrozak DR, Asokan M, Bailer RT, Bennici AK, Chen X, Doria-Rose NA, Druz A, Feng Y, Joyce MG, Louder MK, O'Dell S, Oliver C, Pancera M, Connors M, Hope TJ, Kepler TB, Wyatt RT, Ward AB, Georgiev IS, Kwong PD, Mascola JR, Binley JM
(2017) Immunity 46: 777-791.e10
MeSH Terms: Amino Acid Sequence, Antibodies, Neutralizing, B-Lymphocytes, Binding Sites, Complementarity Determining Regions, HIV Antibodies, HIV Envelope Protein gp120, HIV Infections, HIV-1, Humans, Models, Molecular, Peptide Fragments, Phylogeny, Protein Binding, Protein Conformation, Protein Interaction Domains and Motifs, Protein Multimerization, Vaccines, Virus-Like Particle, env Gene Products, Human Immunodeficiency Virus
Show Abstract · Added March 14, 2018
Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation.
Zhou T, Doria-Rose NA, Cheng C, Stewart-Jones GBE, Chuang GY, Chambers M, Druz A, Geng H, McKee K, Kwon YD, O'Dell S, Sastry M, Schmidt SD, Xu K, Chen L, Chen RE, Louder MK, Pancera M, Wanninger TG, Zhang B, Zheng A, Farney SK, Foulds KE, Georgiev IS, Joyce MG, Lemmin T, Narpala S, Rawi R, Soto C, Todd JP, Shen CH, Tsybovsky Y, Yang Y, Zhao P, Haynes BF, Stamatatos L, Tiemeyer M, Wells L, Scorpio DG, Shapiro L, McDermott AB, Mascola JR, Kwong PD
(2017) Cell Rep 19: 719-732
MeSH Terms: Animals, Antibodies, Neutralizing, Antibody Specificity, Binding Sites, CD4 Antigens, Crystallography, X-Ray, Epitopes, Glycosylation, Guinea Pigs, HIV Antibodies, HIV-1, Humans, Immunization, Macaca mulatta, Molecular Dynamics Simulation, Polysaccharides, Protein Structure, Quaternary, env Gene Products, Human Immunodeficiency Virus
Show Abstract · Added May 3, 2017
While the HIV-1-glycan shield is known to shelter Env from the humoral immune response, its quantitative impact on antibody elicitation has been unclear. Here, we use targeted deglycosylation to measure the impact of the glycan shield on elicitation of antibodies against the CD4 supersite. We engineered diverse Env trimers with select glycans removed proximal to the CD4 supersite, characterized their structures and glycosylation, and immunized guinea pigs and rhesus macaques. Immunizations yielded little neutralization against wild-type viruses but potent CD4-supersite neutralization (titers 1: >1,000,000 against four-glycan-deleted autologous viruses with over 90% breadth against four-glycan-deleted heterologous strains exhibiting tier 2 neutralization character). To a first approximation, the immunogenicity of the glycan-shielded protein surface was negligible, with Env-elicited neutralization (ID) proportional to the exponential of the protein-surface area accessible to antibody. Based on these high titers and exponential relationship, we propose site-selective deglycosylated trimers as priming immunogens to increase the frequency of site-targeting antibodies.
Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Structure-Based Design of a Soluble Prefusion-Closed HIV-1 Env Trimer with Reduced CD4 Affinity and Improved Immunogenicity.
Chuang GY, Geng H, Pancera M, Xu K, Cheng C, Acharya P, Chambers M, Druz A, Tsybovsky Y, Wanninger TG, Yang Y, Doria-Rose NA, Georgiev IS, Gorman J, Joyce MG, O'Dell S, Zhou T, McDermott AB, Mascola JR, Kwong PD
(2017) J Virol 91:
MeSH Terms: AIDS Vaccines, Animals, Antibodies, Neutralizing, CD4 Antigens, Guinea Pigs, HIV Antibodies, HIV Antigens, HIV-1, Humans, Protein Multimerization, Protein Stability, env Gene Products, Human Immunodeficiency Virus
Show Abstract · Added May 3, 2017
The HIV-1 envelope (Env) trimer is a target for vaccine design as well as a conformational machine that facilitates virus entry by transitioning between prefusion-closed, CD4-bound, and coreceptor-bound conformations by transitioning into a postfusion state. Vaccine designers have sought to restrict the conformation of the HIV-1 Env trimer to its prefusion-closed state as this state is recognized by most broadly neutralizing, but not nonneutralizing, antibodies. We previously identified a disulfide bond, I201C-A433C (DS), which stabilizes Env in the vaccine-desired prefusion-closed state. When placed into the context of BG505 SOSIP.664, a soluble Env trimer mimic developed by Sanders, Moore, and colleagues, the engineered DS-SOSIP trimer showed reduced conformational triggering by CD4. Here, we further stabilize DS-SOSIP through a combination of structure-based design and 96-well-based expression and antigenic assessment. From 103 designs, we identified one, named DS-SOSIP.4mut, with four additional mutations at the interface of potentially mobile domains of the prefusion-closed structure. We also determined the crystal structures of DS-SOSIP.4mut at 4.1-Å resolution and of an additional DS-SOSIP.6mut variant at 4.3-Å resolution, and these confirmed the formation of engineered disulfide bonds. Notably, DS-SOSIP.4mut elicited a higher ratio of tier 2 autologous titers versus tier 1 V3-sensitive titers than BG505 SOSIP.664. DS-SOSIP.4mut also showed reduced recognition of CD4 and increased thermostability. The improved antigenicity, thermostability, and immunogenicity of DS-SOSIP.4mut suggest utility as an immunogen or a serologic probe; moreover, the specific four alterations identified here, M154, M300, M302, and L320 (4mut), can also be transferred to other HIV-1 Env trimers of interest to improve their properties. One approach to elicit broadly neutralizing antibodies against HIV-1 is to stabilize the structurally flexible HIV-1 envelope (Env) trimer in a conformation that displays predominantly broadly neutralizing epitopes and few to no nonneutralizing epitopes. The prefusion-closed conformation of HIV-1 Env has been identified as one such preferred conformation, and a current leading vaccine candidate is the BG505 DS-SOSIP variant, comprising two disulfides and an Ile-to-Pro mutation of Env from strain BG505. Here, we introduced additional mutations to further stabilize BG505 DS-SOSIP in the vaccine-preferred prefusion-closed conformation. In guinea pigs, our best mutant, DS-SOSIP.4mut, elicited a significantly higher ratio of autologous versus V3-directed neutralizing antibody responses than the SOSIP-stabilized form. We also observed an improvement in thermostability and a reduction in CD4 affinity. With improved antigenicity, stability, and immunogenicity, DS-SOSIP.4mut-stabilized trimers may have utility as HIV-1 immunogens or in other antigen-specific contexts, such as with B-cell probes.
Copyright © 2017 American Society for Microbiology.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein.
Hicar MD, Chen X, Sulli C, Barnes T, Goodman J, Sojar H, Briney B, Willis J, Chukwuma VU, Kalams SA, Doranz BJ, Spearman P, Crowe JE
(2016) PLoS One 11: e0158861
MeSH Terms: Antibodies, Monoclonal, Antibodies, Neutralizing, B-Lymphocytes, HIV Antibodies, HIV Envelope Protein gp41, HIV Infections, HIV-1, Humans, Immunodominant Epitopes, Protein Domains, Recombinant Proteins, env Gene Products, Human Immunodeficiency Virus
Show Abstract · Added April 13, 2017
Numerous broadly neutralizing antibodies (Abs) target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes). Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs), we previously used HIV virus-like particles (VLPs) to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G.
Stewart-Jones GB, Soto C, Lemmin T, Chuang GY, Druz A, Kong R, Thomas PV, Wagh K, Zhou T, Behrens AJ, Bylund T, Choi CW, Davison JR, Georgiev IS, Joyce MG, Kwon YD, Pancera M, Taft J, Yang Y, Zhang B, Shivatare SS, Shivatare VS, Lee CC, Wu CY, Bewley CA, Burton DR, Koff WC, Connors M, Crispin M, Baxa U, Korber BT, Wong CH, Mascola JR, Kwong PD
(2016) Cell 165: 813-26
MeSH Terms: Antibodies, Neutralizing, Antibodies, Viral, Crystallography, X-Ray, Glycosylation, HIV-1, Immune Evasion, Models, Molecular, Molecular Dynamics Simulation, Polysaccharides, env Gene Products, Human Immunodeficiency Virus
Show Abstract · Added May 3, 2017
The HIV-1-envelope (Env) trimer is covered by a glycan shield of ∼90 N-linked oligosaccharides, which comprises roughly half its mass and is a key component of HIV evasion from humoral immunity. To understand how antibodies can overcome the barriers imposed by the glycan shield, we crystallized fully glycosylated Env trimers from clades A, B, and G, visualizing the shield at 3.4-3.7 Å resolution. These structures reveal the HIV-1-glycan shield to comprise a network of interlocking oligosaccharides, substantially ordered by glycan crowding, that encase the protein component of Env and enable HIV-1 to avoid most antibody-mediated neutralization. The revealed features delineate a taxonomy of N-linked glycan-glycan interactions. Crowded and dispersed glycans are differently ordered, conserved, processed, and recognized by antibody. The structures, along with glycan-array binding and molecular dynamics, reveal a diversity in oligosaccharide affinity and a requirement for accommodating glycans among known broadly neutralizing antibodies that target the glycan-shielded trimer.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Low frequency of broadly neutralizing HIV antibodies during chronic infection even in quaternary epitope targeting antibodies containing large numbers of somatic mutations.
Hicar MD, Chen X, Kalams SA, Sojar H, Landucci G, Forthal DN, Spearman P, Crowe JE
(2016) Mol Immunol 70: 94-103
MeSH Terms: Antibodies, Monoclonal, Antibodies, Neutralizing, B-Lymphocytes, Cell Separation, Enzyme-Linked Immunosorbent Assay, Epitopes, Flow Cytometry, Genes, Immunoglobulin, HIV Antibodies, HIV Infections, Humans, Immunoglobulin Heavy Chains, Immunoglobulin Variable Region, Mutation, env Gene Products, Human Immunodeficiency Virus
Show Abstract · Added January 26, 2016
Neutralizing antibodies (Abs) are thought to be a critical component of an appropriate HIV vaccine response. It has been proposed that Abs recognizing conformationally dependent quaternary epitopes on the HIV envelope (Env) trimer may be necessary to neutralize diverse HIV strains. A number of recently described broadly neutralizing monoclonal Abs (mAbs) recognize complex and quaternary epitopes. Generally, many such Abs exhibit extensive numbers of somatic mutations and unique structural characteristics. We sought to characterize the native antibody (Ab) response against circulating HIV focusing on such conformational responses, without a prior selection based on neutralization. Using a capture system based on VLPs incorporating cleaved envelope protein, we identified a selection of B cells that produce quaternary epitope targeting Abs (QtAbs). Similar to a number of broadly neutralizing Abs, the Ab genes encoding these QtAbs showed extensive numbers of somatic mutations. However, when expressed as recombinant molecules, these Abs failed to neutralize virus or mediate ADCVI activity. Molecular analysis showed unusually high numbers of mutations in the Ab heavy chain framework 3 region of the variable genes. The analysis suggests that large numbers of somatic mutations occur in Ab genes encoding HIV Abs in chronically infected individuals in a non-directed, stochastic, manner.
Copyright © 2015 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Envelope variants circulating as initial neutralization breadth developed in two HIV-infected subjects stimulate multiclade neutralizing antibodies in rabbits.
Malherbe DC, Pissani F, Sather DN, Guo B, Pandey S, Sutton WF, Stuart AB, Robins H, Park B, Krebs SJ, Schuman JT, Kalams S, Hessell AJ, Haigwood NL
(2014) J Virol 88: 12949-67
MeSH Terms: AIDS Vaccines, Animals, Antibodies, Neutralizing, Female, HIV Antibodies, HIV Infections, HIV-1, Humans, Molecular Sequence Data, RNA, Viral, Rabbits, Sequence Analysis, DNA, env Gene Products, Human Immunodeficiency Virus
Show Abstract · Added January 20, 2015
UNLABELLED - Identifying characteristics of the human immunodeficiency virus type 1 (HIV-1) envelope that are effective in generating broad, protective antibodies remains a hurdle to HIV vaccine design. Emerging evidence of the development of broad and potent neutralizing antibodies in HIV-infected subjects suggests that founder and subsequent progeny viruses may express unique antigenic motifs that contribute to this developmental pathway. We hypothesize that over the course of natural infection, B cells are programmed to develop broad antibodies by exposure to select populations of emerging envelope quasispecies variants. To test this hypothesis, we identified two unrelated subjects whose antibodies demonstrated increasing neutralization breadth against a panel of HIV-1 isolates over time. Full-length functional env genes were cloned longitudinally from these subjects from months after infection through 2.6 to 5.8 years of infection. Motifs associated with the development of breadth in published, cross-sectional studies were found in both subjects. We compared the immunogenicity of envelope vaccines derived from time points obtained during and after broadening of neutralization activity within these subjects. Rabbits were coimmunized four times with selected multiple gp160 DNAs and gp140-trimeric envelope proteins. The affinity of the polyclonal response increased as a function of boosting. The most rapid and persistent neutralization of multiclade tier 1 viruses was elicited by envelopes that were circulating in plasma at time points prior to the development of 50% neutralization breadth in both human subjects. The breadth elicited in rabbits was not improved by exposure to later envelope variants. These data have implications for vaccine development in describing a target time point to identify optimal envelope immunogens.
IMPORTANCE - Vaccine protection against viral infections correlates with the presence of neutralizing antibodies; thus, vaccine components capable of generating potent neutralization are likely to be critical constituents in an effective HIV vaccine. However, vaccines tested thus far have elicited only weak antibody responses and very modest, waning protection. We hypothesized that B cells develop broad antibodies by exposure to the evolving viral envelope population and tested this concept using multiple envelopes from two subjects who developed neutralization breadth within a few years of infection. We compared different combinations of envelopes from each subject to identify the most effective immunogens and regimens. In each subject, use of HIV envelopes circulating during the early development and maturation of breadth generated more-potent antibodies that were modestly cross neutralizing. These data suggest a new approach to identifying envelope immunogens that may be more effective in generating protective antibodies in humans.
Copyright © 2014, American Society for Microbiology. All Rights Reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms