Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 100

Publication Record

Connections

Identification of Proteomic Features To Distinguish Benign Pulmonary Nodules from Lung Adenocarcinoma.
Codreanu SG, Hoeksema MD, Slebos RJC, Zimmerman LJ, Rahman SMJ, Li M, Chen SC, Chen H, Eisenberg R, Liebler DC, Massion PP
(2017) J Proteome Res 16: 3266-3276
MeSH Terms: 5-Lipoxygenase-Activating Proteins, Adenocarcinoma, Adenocarcinoma of Lung, Adult, Aged, Antigens, CD, Arachidonate 5-Lipoxygenase, Biomarkers, Tumor, CD11 Antigens, Cell Adhesion Molecules, Diagnosis, Differential, Female, GPI-Linked Proteins, Gene Expression Regulation, Neoplastic, Glucose Transporter Type 3, Humans, Integrin alpha Chains, Lung Neoplasms, Male, Middle Aged, Neoplasm Proteins, Proteomics, Respiratory Mucosa, Solitary Pulmonary Nodule, Tandem Mass Spectrometry, Tissue Array Analysis, Transcriptome
Show Abstract · Added January 29, 2018
We hypothesized that distinct protein expression features of benign and malignant pulmonary nodules may reveal novel candidate biomarkers for the early detection of lung cancer. We performed proteome profiling by liquid chromatography-tandem mass spectrometry to characterize 34 resected benign lung nodules, 24 untreated lung adenocarcinomas (ADCs), and biopsies of bronchial epithelium. Group comparisons identified 65 proteins that differentiate nodules from ADCs and normal bronchial epithelium and 66 proteins that differentiate ADCs from nodules and normal bronchial epithelium. We developed a multiplexed parallel reaction monitoring (PRM) assay to quantify a subset of 43 of these candidate biomarkers in an independent cohort of 20 benign nodules, 21 ADCs, and 20 normal bronchial biopsies. PRM analyses confirmed significant nodule-specific abundance of 10 proteins including ALOX5, ALOX5AP, CCL19, CILP1, COL5A2, ITGB2, ITGAX, PTPRE, S100A12, and SLC2A3 and significant ADC-specific abundance of CEACAM6, CRABP2, LAD1, PLOD2, and TMEM110-MUSTN1. Immunohistochemistry analyses for seven selected proteins performed on an independent set of tissue microarrays confirmed nodule-specific expression of ALOX5, ALOX5AP, ITGAX, and SLC2A3 and cancer-specific expression of CEACAM6. These studies illustrate the value of global and targeted proteomics in a systematic process to identify and qualify candidate biomarkers for noninvasive molecular diagnosis of lung cancer.
0 Communities
1 Members
0 Resources
27 MeSH Terms
Opposing roles of LTB4 and PGE2 in regulating the inflammasome-dependent scorpion venom-induced mortality.
Zoccal KF, Sorgi CA, Hori JI, Paula-Silva FW, Arantes EC, Serezani CH, Zamboni DS, Faccioli LH
(2016) Nat Commun 7: 10760
MeSH Terms: Animals, Arachidonate 5-Lipoxygenase, Blotting, Western, Carrier Proteins, Celecoxib, Cyclic AMP, Cyclic AMP-Dependent Protein Kinases, Cyclooxygenase Inhibitors, Dinoprostone, In Vitro Techniques, Indoles, Indomethacin, Inflammasomes, Interleukin-1beta, Leukotriene B4, Lipoxygenase Inhibitors, Macrophages, Macrophages, Peritoneal, Mice, Mice, Knockout, NF-kappa B, NLR Family, Pyrin Domain-Containing 3 Protein, Phosphoproteins, Prostaglandin Antagonists, Receptors, Prostaglandin E, EP2 Subtype, Receptors, Prostaglandin E, EP4 Subtype, Reverse Transcriptase Polymerase Chain Reaction, Scorpion Stings, Scorpion Venoms, Scorpions, Xanthones
Show Abstract · Added May 4, 2017
Tityus serrulatus sting causes thousands of deaths annually worldwide. T. serrulatus-envenomed victims exhibit local or systemic reaction that culminates in pulmonary oedema, potentially leading to death. However, the molecular mechanisms underlying T. serrulatus venom (TsV) activity remain unknown. Here we show that TsV triggers NLRP3 inflammasome activation via K(+) efflux. Mechanistically, TsV triggers lung-resident cells to release PGE2, which induces IL-1β production via E prostanoid receptor 2/4-cAMP-PKA-NFκB-dependent mechanisms. IL-1β/IL-1R actions account for oedema and neutrophil recruitment to the lungs, leading to TsV-induced mortality. Inflammasome activation triggers LTB4 production and further PGE2 via IL-1β/IL-1R signalling. Activation of LTB4-BLT1/2 pathway decreases cAMP generation, controlling TsV-induced inflammation. Exogenous administration confirms LTB4 anti-inflammatory activity and abrogates TsV-induced mortality. These results suggest that the balance between LTB4 and PGE2 determines the amount of IL-1β inflammasome-dependent release and the outcome of envenomation. We suggest COX1/2 inhibition as an effective therapeutic intervention for scorpion envenomation.
0 Communities
1 Members
0 Resources
31 MeSH Terms
Lipoxin Inhibits Fungal Uptake by Macrophages and Reduces the Severity of Acute Pulmonary Infection Caused by Paracoccidioides brasiliensis.
Ribeiro LR, Loures FV, de Araújo EF, Feriotti C, Costa TA, Serezani CH, Jancar S, Calich VL
(2015) Mediators Inflamm 2015: 852574
MeSH Terms: Acetates, Animals, Arachidonate 5-Lipoxygenase, Dinoprostone, Inflammation Mediators, Leukotriene Antagonists, Leukotriene C4, Lipoxins, Macrophages, Alveolar, Male, Mice, Mice, 129 Strain, Mice, Inbred A, Mice, Knockout, Paracoccidioides, Paracoccidioidomycosis, Quinolines, Receptors, Leukotriene, Receptors, Pattern Recognition
Show Abstract · Added May 4, 2017
Cysteinyl leukotrienes (CysLTs) and lipoxins (LXs) are lipid mediators that control inflammation, with the former inducing and the latter inhibiting this process. Because the role played by these mediators in paracoccidioidomycosis was not investigated, we aimed to characterize the role of CysLT in the pulmonary infection developed by resistant (A/J) and susceptible (B10.A) mice. 48 h after infection, elevated levels of pulmonary LTC4 and LXA4 were produced by both mouse strains, but higher levels were found in the lungs of susceptible mice. Blocking the CysLTs receptor by MTL reduced fungal loads in B10.A, but not in A/J mice. In susceptible mice, MLT treatment led to reduced influx of PMN leukocytes, increased recruitment of monocytes, predominant synthesis of anti-inflammatory cytokines, and augmented expression of 5- and 15-lipoxygenase mRNA, suggesting a prevalent LXA4 activity. In agreement, MTL-treated macrophages showed reduced fungal burdens associated with decreased ingestion of fungal cells. Furthermore, the addition of exogenous LX reduced, and the specific blockade of the LX receptor increased the fungal loads of B10.A macrophages. This study showed for the first time that inhibition of CysLTs signaling results in less severe pulmonary paracoccidioidomycosis that occurs in parallel with elevated LX activity and reduced infection of macrophages.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Leukotriene B4-mediated sterile inflammation promotes susceptibility to sepsis in a mouse model of type 1 diabetes.
Filgueiras LR, Brandt SL, Wang S, Wang Z, Morris DL, Evans-Molina C, Mirmira RG, Jancar S, Serezani CH
(2015) Sci Signal 8: ra10
MeSH Terms: Analysis of Variance, Animals, Arachidonate 5-Lipoxygenase, Chromatin Immunoprecipitation, Cytokines, Diabetes Mellitus, Type 1, Female, Gene Expression Regulation, Immunoblotting, Inflammation, Inflammation Mediators, Insulin, Leukotriene B4, Macrophages, Mice, Mice, Knockout, Myeloid Differentiation Factor 88, Real-Time Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, STAT1 Transcription Factor, Sepsis
Show Abstract · Added May 4, 2017
Type 1 diabetes mellitus (T1DM) is associated with chronic systemic inflammation and enhanced susceptibility to systemic bacterial infection (sepsis). We hypothesized that low insulin concentrations in T1DM trigger the enzyme 5-lipoxygenase (5-LO) to produce the lipid mediator leukotriene B4 (LTB4), which triggers systemic inflammation that may increase susceptibility to polymicrobial sepsis. Consistent with chronic inflammation, peritoneal macrophages from two mouse models of T1DM had greater abundance of the adaptor MyD88 (myeloid differentiation factor 88) and its direct transcriptional effector STAT-1 (signal transducer and activator of transcription 1) than macrophages from nondiabetic mice. Expression of Alox5, which encodes 5-LO, and the concentration of the proinflammatory cytokine interleukin-1β (IL-1β) were also increased in peritoneal macrophages and serum from T1DM mice. Insulin treatment reduced LTB4 concentrations in the circulation and Myd88 and Stat1 expression in the macrophages from T1DM mice. T1DM mice treated with a 5-LO inhibitor had reduced Myd88 mRNA in macrophages and increased abundance of IL-1 receptor antagonist and reduced production of IL-β in the circulation. T1DM mice lacking 5-LO or the receptor for LTB4 also produced less proinflammatory cytokines. Compared to wild-type or untreated diabetic mice, T1DM mice lacking the receptor for LTB4 or treated with a 5-LO inhibitor survived polymicrobial sepsis, had reduced production of proinflammatory cytokines, and had decreased bacterial counts. These results uncover a role for LTB4 in promoting sterile inflammation in diabetes and the enhanced susceptibility to sepsis in T1DM.
Copyright © 2015, American Association for the Advancement of Science.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Lipoxygenase-catalyzed transformation of epoxy fatty acids to hydroxy-endoperoxides: a potential P450 and lipoxygenase interaction.
Teder T, Boeglin WE, Brash AR
(2014) J Lipid Res 55: 2587-96
MeSH Terms: 8,11,14-Eicosatrienoic Acid, Animals, Arachidonate 12-Lipoxygenase, Arachidonate 15-Lipoxygenase, Biocatalysis, Blood Platelets, Chromatography, High Pressure Liquid, Eicosanoids, Epoxy Compounds, Gas Chromatography-Mass Spectrometry, Humans, Hydroxylation, Linolenic Acids, Lipid Peroxides, Lipoxygenase, Mice, Molecular Structure, Nuclear Magnetic Resonance, Biomolecular, Oxidation-Reduction, Recombinant Proteins, Soybean Proteins, Spectrometry, Mass, Electrospray Ionization, Stereoisomerism
Show Abstract · Added January 21, 2015
Herein, we characterize a generally applicable transformation of fatty acid epoxides by lipoxygenase (LOX) enzymes that results in the formation of a five-membered endoperoxide ring in the end product. We demonstrated this transformation using soybean LOX-1 in the metabolism of 15,16-epoxy-α-linolenic acid, and murine platelet-type 12-LOX and human 15-LOX-1 in the metabolism of 14,15-epoxyeicosatrienoic acid (14,15-EET). A detailed examination of the transformation of the two enantiomers of 15,16-epoxy-α-linolenic acid by soybean LOX-1 revealed that the expected primary product, a 13S-hydroperoxy-15,16-epoxide, underwent a nonenzymatic transformation in buffer into a new derivative that was purified by HPLC and identified by UV, LC-MS, and ¹H-NMR as a 13,15-endoperoxy-16-hydroxy-octadeca-9,11-dienoic acid. The configuration of the endoperoxide (cis or trans side chains) depended on the steric relationship of the new hydroperoxy moiety to the enantiomeric configuration of the fatty acid epoxide. The reaction mechanism involves intramolecular nucleophilic substitution (SNi) between the hydroperoxy (nucleophile) and epoxy group (electrophile). Equivalent transformations were documented in metabolism of the enantiomers of 14,15-EET by the two mammalian LOX enzymes, 15-LOX-1 and platelet-type 12-LOX. We conclude that this type of transformation could occur naturally with the co-occurrence of LOX and cytochrome P450 or peroxygenase enzymes, and it could also contribute to the complexity of products formed in the autoxidation reactions of polyunsaturated fatty acids.
Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Crystal structure of a lipoxygenase in complex with substrate: the arachidonic acid-binding site of 8R-lipoxygenase.
Neau DB, Bender G, Boeglin WE, Bartlett SG, Brash AR, Newcomer ME
(2014) J Biol Chem 289: 31905-13
MeSH Terms: Animals, Arachidonate Lipoxygenases, Arachidonic Acid, Binding Sites, Catalysis, Crystallography, X-Ray, Humans, Inflammation, Iron, Lipids, Models, Molecular, Mutagenesis, Mutation, Oxygen, Protein Binding, Protein Conformation, Rabbits, Swine
Show Abstract · Added January 21, 2015
Lipoxygenases (LOX) play critical roles in mammalian biology in the generation of potent lipid mediators of the inflammatory response; consequently, they are targets for the development of isoform-specific inhibitors. The regio- and stereo-specificity of the oxygenation of polyunsaturated fatty acids by the enzymes is understood in terms of the chemistry, but structural observation of the enzyme-substrate interactions is lacking. Although several LOX crystal structures are available, heretofore the rapid oxygenation of bound substrate has precluded capture of the enzyme-substrate complex, leaving a gap between chemical and structural insights. In this report, we describe the 2.0 Å resolution structure of 8R-LOX in complex with arachidonic acid obtained under anaerobic conditions. Subtle rearrangements, primarily in the side chains of three amino acids, allow binding of arachidonic acid in a catalytically competent conformation. Accompanying experimental work supports a model in which both substrate tethering and cavity depth contribute to positioning the appropriate carbon at the catalytic machinery.
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
18 MeSH Terms
ω-Alkynyl lipid surrogates for polyunsaturated fatty acids: free radical and enzymatic oxidations.
Beavers WN, Serwa R, Shimozu Y, Tallman KA, Vaught M, Dalvie ED, Marnett LJ, Porter NA
(2014) J Am Chem Soc 136: 11529-39
MeSH Terms: Animals, Arachidonate 15-Lipoxygenase, Arachidonic Acid, Carbon, Cell Line, Chromatography, High Pressure Liquid, Cyclooxygenase 1, Cyclooxygenase 2, Fatty Acids, Fatty Acids, Unsaturated, Free Radicals, Hydroxyeicosatetraenoic Acids, Linoleic Acid, Lipids, Lipoxygenases, Macromolecular Substances, Macrophages, Mice, Oxygen, Soybeans, Spectrophotometry, Ultraviolet, Tandem Mass Spectrometry
Show Abstract · Added February 22, 2016
Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Inhibitors of the 5-lipoxygenase arachidonic acid pathway induce ATP release and ATP-dependent organic cation transport in macrophages.
da Silva-Souza HA, Lira MN, Costa-Junior HM, da Cruz CM, Vasconcellos JS, Mendes AN, Pimenta-Reis G, Alvarez CL, Faccioli LH, Serezani CH, Schachter J, Persechini PM
(2014) Biochim Biophys Acta 1838: 1967-77
MeSH Terms: Adenosine Triphosphate, Animals, Arachidonate 5-Lipoxygenase, Calcium, Cations, Ion Transport, Lipoxygenase Inhibitors, Macrophages, Mice, Mice, Inbred C57BL, Phospholipases A2, Receptors, Purinergic P2X7
Show Abstract · Added May 4, 2017
We have previously described that arachidonic acid (AA)-5-lipoxygenase (5-LO) metabolism inhibitors such as NDGA and MK886, inhibit cell death by apoptosis, but not by necrosis, induced by extracellular ATP (ATPe) binding to P2X7 receptors in macrophages. ATPe binding to P2X7 also induces large cationic and anionic organic molecules uptake in these cells, a process that involves at least two distinct transport mechanisms: one for cations and another for anions. Here we show that inhibitors of the AA-5-LO pathway do not inhibit P2X7 receptors, as judged by the maintenance of the ATPe-induced uptake of fluorescent anionic dyes. In addition, we describe two new transport phenomena induced by these inhibitors in macrophages: a cation-selective uptake of fluorescent dyes and the release of ATP. The cation uptake requires secreted ATPe, but, differently from the P2X7/ATPe-induced phenomena, it is also present in macrophages derived from mice deficient in the P2X7 gene. Inhibitors of phospholipase A2 and of the AA-cyclooxygenase pathway did not induce the cation uptake. The uptake of non-organic cations was investigated by measuring the free intracellular Ca(2+) concentration ([Ca(2+)]i) by Fura-2 fluorescence. NDGA, but not MK886, induced an increase in [Ca(2+)]i. Chelating Ca(2+) ions in the extracellular medium suppressed the intracellular Ca(2+) signal without interfering in the uptake of cationic dyes. We conclude that inhibitors of the AA-5-LO pathway do not block P2X7 receptors, trigger the release of ATP, and induce an ATP-dependent uptake of organic cations by a Ca(2+)- and P2X7-independent transport mechanism in macrophages.
Copyright © 2014 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
The leukotriene B₄/BLT₁ axis is a key determinant in susceptibility and resistance to histoplasmosis.
Secatto A, Soares EM, Locachevic GA, Assis PA, Paula-Silva FW, Serezani CH, de Medeiros AI, Faccioli LH
(2014) PLoS One 9: e85083
MeSH Terms: Animals, Arachidonate 5-Lipoxygenase, Disease Susceptibility, Enzyme Inhibitors, Gene Expression, Histoplasma, Histoplasmosis, Host Specificity, Host-Pathogen Interactions, Leukotriene B4, Lung, Macrophages, Mice, Mice, 129 Strain, Mice, Inbred C57BL, Phagocytosis, Receptors, Leukotriene B4, Rodent Diseases, Signal Transduction, Spleen
Show Abstract · Added May 4, 2017
The bioactive lipid mediator leukotriene B4 (LTB4) greatly enhances phagocyte antimicrobial functions against a myriad of pathogens. In murine histoplasmosis, inhibition of the LT-generating enzyme 5-lypoxigenase (5-LO) increases the susceptibility of the host to infection. In this study, we investigated whether murine resistance or susceptibility to Histoplasma capsulatum infection is associated with leukotriene production and an enhancement of in vivo and/or in vitro antimicrobial effector function. We show that susceptible C57BL/6 mice exhibit a higher fungal burden in the lung and spleen, increased mortality, lower expression levels of 5-LO and leukotriene B4 receptor 1 (BLT1) and decreased LTB4 production compared to the resistant 129/Sv mice. Moreover, we demonstrate that endogenous and exogenous LTs are required for the optimal phagocytosis of H. capsulatum by macrophages from both murine strains, although C57BL/6 macrophages are more sensitive to the effects of LTB4 than 129/Sv macrophages. Therefore, our results provide novel evidence that LTB4 production and BLT1 signaling are required for a histoplasmosis-resistant phenotype.
0 Communities
1 Members
0 Resources
20 MeSH Terms
The importance of the lipoxygenase-hepoxilin pathway in the mammalian epidermal barrier.
Muñoz-Garcia A, Thomas CP, Keeney DS, Zheng Y, Brash AR
(2014) Biochim Biophys Acta 1841: 401-8
MeSH Terms: 8,11,14-Eicosatrienoic Acid, Animals, Arachidonate 12-Lipoxygenase, Ceramides, Epidermis, Humans, Lipid Metabolism, Lipoxygenase
Show Abstract · Added March 7, 2014
This review covers the background to discovery of the two key lipoxygenases (LOX) involved in epidermal barrier function, 12R-LOX and eLOX3, and our current views on their functioning. In the outer epidermis, their consecutive actions oxidize linoleic acid esterified in ω-hydroxy-ceramide to a hepoxilin-related derivative. The relevant background to hepoxilin and trioxilin biochemistry is briefly reviewed. We outline the evidence that linoleate in the ceramide is the natural substrate of the two LOX enzymes and our proposal for its importance in construction of the epidermal water barrier. Our hypothesis is that the oxidation promotes hydrolysis of the oxidized linoleate moiety from the ceramide. The resulting free ω-hydroxyl of the ω-hydroxyceramide is covalently bound to proteins on the surface of the corneocytes to form the corneocyte lipid envelope, a key barrier component. Understanding the role of the LOX enzymes and their hepoxilin products should provide rational approaches to ameliorative therapy for a number of the congenital ichthyoses involving compromised barrier function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
© 2013.
0 Communities
1 Members
0 Resources
8 MeSH Terms