, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 32

Publication Record

Connections

Non-visual arrestins regulate the focal adhesion formation via small GTPases RhoA and Rac1 independently of GPCRs.
Cleghorn WM, Bulus N, Kook S, Gurevich VV, Zent R, Gurevich EV
(2018) Cell Signal 42: 259-269
MeSH Terms: Actin Cytoskeleton, Animals, Cell Adhesion, Cell Line, Cell Movement, Fibroblasts, Focal Adhesions, Gene Expression Regulation, Mice, Neuropeptides, Receptors, G-Protein-Coupled, Signal Transduction, beta-Arrestin 1, beta-Arrestin 2, cdc42 GTP-Binding Protein, rac1 GTP-Binding Protein, rho GTP-Binding Proteins
Show Abstract · Added March 14, 2018
Arrestins recruit a variety of signaling proteins to active phosphorylated G protein-coupled receptors in the plasma membrane and to the cytoskeleton. Loss of arrestins leads to decreased cell migration, altered cell shape, and an increase in focal adhesions. Small GTPases of the Rho family are molecular switches that regulate actin cytoskeleton and affect a variety of dynamic cellular functions including cell migration and cell morphology. Here we show that non-visual arrestins differentially regulate RhoA and Rac1 activity to promote cell spreading via actin reorganization, and focal adhesion formation via two distinct mechanisms. Arrestins regulate these small GTPases independently of G-protein-coupled receptor activation.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development.
Elias BC, Das A, Parekh DV, Mernaugh G, Adams R, Yang Z, Brakebusch C, Pozzi A, Marciano DK, Carroll TJ, Zent R
(2015) J Cell Sci 128: 4293-305
MeSH Terms: Animals, Cell Polarity, Cytoskeleton, Epithelial Cells, Kidney Tubules, Mice, cdc42 GTP-Binding Protein
Show Abstract · Added February 4, 2016
The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and maintenance, its exact molecular function in kidney development is not well understood. In this study, we define the specific role of Cdc42 during murine kidney epithelial tubulogenesis by deleting it selectively at the initiation of ureteric bud or metanephric mesenchyme development. Deletion in either lineage results in abnormal tubulogenesis, with profound defects in polarity, lumen formation and the actin cytoskeleton. Ultimately, these defects lead to renal failure. Additionally, in vitro analysis of Cdc42-null collecting duct cells shows that Cdc42 controls these processes by regulating the polarity Par complex (Par3-Par6-aPKC-Cdc42) and the cytoskeletal proteins N-Wasp and ezrin. Thus, we conclude that the principal role of Cdc42 in ureteric bud and metanephric mesenchyme development is to regulate epithelial cell polarity and the actin cytoskeleton.
© 2015. Published by The Company of Biologists Ltd.
1 Communities
1 Members
1 Resources
7 MeSH Terms
Type III TGFβ receptor and Src direct hyaluronan-mediated invasive cell motility.
Allison P, Espiritu D, Barnett JV, Camenisch TD
(2015) Cell Signal 27: 453-9
MeSH Terms: Actin Cytoskeleton, Amino Acid Substitution, Animals, Arrestin, Cell Movement, Cells, Cultured, Epithelial-Mesenchymal Transition, Hyaluronic Acid, Mice, Neuropeptides, Pericardium, Protein Binding, Proteoglycans, RNA Interference, RNA, Small Interfering, Receptors, Transforming Growth Factor beta, cdc42 GTP-Binding Protein, rac1 GTP-Binding Protein, rho GTP-Binding Proteins, src-Family Kinases
Show Abstract · Added February 21, 2016
During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types which contribute to the coronary vessels. This process requires epithelial to mesenchymal transition (EMT) and directed cellular invasion. The Type III Transforming Growth Factor-beta Receptor (TGFβR3) is required for epicardial cell invasion and coronary vessel development. Using primary epicardial cells derived from Tgfbr3(+/+) and Tgfbr3(-/-) mouse embryos, high-molecular weight hyaluronan (HMWHA) stimulated cellular invasion and filamentous (f-actin) polymerization are detected in Tgfbr3(+/+) cells, but not in Tgfbr3(-/-) cells. Furthermore, HMWHA-stimulated cellular invasion and f-actin polymerization in Tgfbr3(+/+) epicardial cells are dependent on Src kinase. Src activation in HMWHA-stimulated Tgfbr3(-/-) epicardial cells is not detected in response to HMWHA. RhoA and Rac1 also fail to activate in response to HMWHA in Tgfbr3(-/-) cells. These events coincide with defective f-actin formation and deficient cellular invasion. Finally, a T841A activating substitution in TGFβR3 drives ligand-independent Src activation. Collectively, these data define a TGFβR3-Src-RhoA/Rac1 pathway that is essential for hyaluronan-directed cell invasion in epicardial cells.
Copyright © 2015 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms
CD148 tyrosine phosphatase promotes cadherin cell adhesion.
Takahashi K, Matafonov A, Sumarriva K, Ito H, Lauhan C, Zemel D, Tsuboi N, Chen J, Reynolds A, Takahashi T
(2014) PLoS One 9: e112753
MeSH Terms: Cadherins, Cell Adhesion, Cell Line, Drosophila Proteins, Humans, Phosphorylation, Receptor-Like Protein Tyrosine Phosphatases, Class 3, Tyrosine, beta Catenin, cdc42 GTP-Binding Protein, rac GTP-Binding Proteins, rhoA GTP-Binding Protein
Show Abstract · Added February 12, 2015
CD148 is a transmembrane tyrosine phosphatase that is expressed at cell junctions. Recent studies have shown that CD148 associates with the cadherin/catenin complex and p120 catenin (p120) may serve as a substrate. However, the role of CD148 in cadherin cell-cell adhesion remains unknown. Therefore, here we addressed this issue using a series of stable cells and cell-based assays. Wild-type (WT) and catalytically inactive (CS) CD148 were introduced to A431D (lacking classical cadherins), A431D/E-cadherin WT (expressing wild-type E-cadherin), and A431D/E-cadherin 764AAA (expressing p120-uncoupled E-cadherin mutant) cells. The effects of CD148 in cadherin adhesion were assessed by Ca2+ switch and cell aggregation assays. Phosphorylation of E-cadherin/catenin complex and Rho family GTPase activities were also examined. Although CD148 introduction did not alter the expression levels and complex formation of E-cadherin, p120, and β-catenin, CD148 WT, but not CS, promoted cadherin contacts and strengthened cell-cell adhesion in A431D/E-cadherin WT cells. This effect was accompanied by an increase in Rac1, but not RhoA and Cdc42, activity and largely diminished by Rac1 inhibition. Further, we demonstrate that CD148 reduces the tyrosine phosphorylation of p120 and β-catenin; causes the dephosphorylation of Y529 suppressive tyrosine residue in Src, a well-known CD148 site, increasing Src activity and enhancing the phosphorylation of Y228 (a Src kinase site) in p120, in E-cadherin contacts. Consistent with these findings, CD148 dephosphorylated both p120 and β-catenin in vitro. The shRNA-mediated CD148 knockdown in A431 cells showed opposite effects. CD148 showed no effects in A431D and A431D/E-cadherin 764AAA cells. In aggregate, these findings provide the first evidence that CD148 promotes E-cadherin adhesion by regulating Rac1 activity concomitant with modulation of p120, β-catenin, and Src tyrosine phosphorylation. This effect requires E-cadherin and p120 association.
1 Communities
2 Members
0 Resources
12 MeSH Terms
Spatial control of Cdc42 signalling by a GM130-RasGRF complex regulates polarity and tumorigenesis.
Baschieri F, Confalonieri S, Bertalot G, Di Fiore PP, Dietmaier W, Leist M, Crespo P, Macara IG, Farhan H
(2014) Nat Commun 5: 4839
MeSH Terms: Antigens, CD, Autoantigens, Cadherins, Carcinogenesis, Cell Line, Tumor, Cell Polarity, Gene Expression Regulation, Neoplastic, Gene Silencing, Humans, MAP Kinase Signaling System, MCF-7 Cells, Membrane Proteins, Mitogen-Activated Protein Kinase 3, Rho Guanine Nucleotide Exchange Factors, Signal Transduction, cdc42 GTP-Binding Protein, ras Guanine Nucleotide Exchange Factors, ras-GRF1
Show Abstract · Added April 10, 2018
The small GTPase Cdc42 is a key regulator of polarity, but little is known in mammals about its spatial regulation and the relevance of spatial Cdc42 pools for polarity. Here we report the identification of a GM130-RasGRF complex as a regulator of Cdc42 at the Golgi. Silencing GM130 results in RasGRF-dependent inhibition of the Golgi pool of Cdc42, but does not affect Cdc42 at the cell surface. Furthermore, active Cdc42 at the Golgi is important to sustain asymmetric front-rear Cdc42-GTP distribution in directionally migrating cells. Concurrent to Cdc42 inhibition, silencing GM130 also results in RasGRF-dependent Ras-ERK pathway activation. Moreover, depletion of GM130 is sufficient to induce E-cadherin downregulation, indicative of a loss in cell polarity and epithelial identity. Accordingly, GM130 expression is frequently lost in colorectal and breast cancer patients. These findings establish a previously unrecognized role for a GM130-RasGRF-Cdc42 connection in regulating polarity and tumorigenesis.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Activation of Rac by Asef2 promotes myosin II-dependent contractility to inhibit cell migration on type I collagen.
Jean L, Majumdar D, Shi M, Hinkle LE, Diggins NL, Ao M, Broussard JA, Evans JC, Choma DP, Webb DJ
(2013) J Cell Sci 126: 5585-97
MeSH Terms: Cell Adhesion, Cell Line, Tumor, Cell Movement, Collagen Type I, Guanine Nucleotide Exchange Factors, Humans, Integrin beta1, Myosin Type II, cdc42 GTP-Binding Protein, rac GTP-Binding Proteins
Show Abstract · Added May 20, 2014
Non-muscle myosin II (MyoII) contractility is central to the regulation of numerous cellular processes, including migration. Rho is a well-characterized modulator of actomyosin contractility, but the function of other GTPases, such as Rac, in regulating contractility is currently not well understood. Here, we show that activation of Rac by the guanine nucleotide exchange factor Asef2 (also known as SPATA13) impairs migration on type I collagen through a MyoII-dependent mechanism that enhances contractility. Knockdown of endogenous Rac or treatment of cells with a Rac-specific inhibitor decreases the amount of active MyoII, as determined by serine 19 (S19) phosphorylation, and negates the Asef2-promoted increase in contractility. Moreover, treatment of cells with blebbistatin, which inhibits MyoII activity, abolishes the Asef2-mediated effect on migration. In addition, Asef2 slows the turnover of adhesions in protrusive regions of cells by promoting large mature adhesions, which has been linked to actomyosin contractility, with increased amounts of active β1 integrin. Hence, our data reveal a new role for Rac activation, promoted by Asef2, in modulating actomyosin contractility, which is important for regulating cell migration and adhesion dynamics.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Cdc42 coordinates proliferation, polarity, migration, and differentiation of small intestinal epithelial cells in mice.
Melendez J, Liu M, Sampson L, Akunuru S, Han X, Vallance J, Witte D, Shroyer N, Zheng Y
(2013) Gastroenterology 145: 808-19
MeSH Terms: Animals, Cell Differentiation, Cell Movement, Cell Polarity, Cell Proliferation, Intestinal Mucosa, Intestine, Small, Mice, cdc42 GTP-Binding Protein
Show Abstract · Added March 19, 2017
BACKGROUND & AIMS - Cdc42 is a Rho GTPase that regulates diverse cellular functions, including proliferation, differentiation, migration, and polarity. In the intestinal epithelium, a balance among these events maintains homeostasis. We used genetic techniques to investigate the role of Cdc42 in intestinal homeostasis and its mechanisms.
METHODS - We disrupted Cdc42 specifically in intestinal epithelial cells by creating Cdc42flox/flox-villin-Cre+ and Cdc42flox/flox-Rosa26-CreER+ mice. We collected intestinal and other tissues, and analyzed their cellular, molecular, morphologic, and physiologic features, compared with the respective heterozygous mice.
RESULTS - In all mutant mice studied, the intestinal epithelium had gross hyperplasia, crypt enlargement, microvilli inclusion, and abnormal epithelial permeability. Cdc42 deficiency resulted in defective Paneth cell differentiation and localization without affecting the differentiation of other cell lineages. In mutant intestinal crypts, proliferating stem and progenitor cells increased, compared with control mice, resulting in increased crypt depth. Cdc42 deficiency increased migration of stem and progenitor cells along the villi, caused a mild defect in the apical junction orientation, and impaired intestinal epithelium polarity, which can contribute to the observed defective intestinal permeability. The intestinal epithelium of the Cdc42flox/flox-villin-Cre+ and Cdc42flox/flox-Rosa26-CreER+ mice appeared similar to that of patients with microvillus inclusion disease. In the digestive track, loss of Cdc42 also resulted in crypt hyperplasia in the colon, but not the stomach.
CONCLUSIONS - Cdc42 regulates proliferation, polarity, migration, and differentiation of intestinal epithelial cells in mice and maintains intestine epithelial barrier and homeostasis. Defects in Cdc42 signaling could be associated with microvillus inclusion disease.
Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Cdc42 promotes host defenses against fatal infection.
Lee K, Boyd KL, Parekh DV, Kehl-Fie TE, Baldwin HS, Brakebusch C, Skaar EP, Boothby M, Zent R
(2013) Infect Immun 81: 2714-23
MeSH Terms: Animals, Chemotaxis, Leukocyte, Fibroblasts, Flow Cytometry, Immunity, Innate, Immunoblotting, Infections, Mice, Mice, Inbred C57BL, Mice, Transgenic, Neutrophils, cdc42 GTP-Binding Protein
Show Abstract · Added December 10, 2013
The small Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, invasion, migration, differentiation, and morphogenesis. As the role of Cdc42-dependent signaling in fibroblasts in vivo is unknown, we attempted to specifically delete it in these cells by crossing the Cdc42(fl/fl) mouse with an fibroblast-specific protein 1 (FSP1)-Cre mouse, which is thought to mediate recombination exclusively in fibroblasts. Surprisingly, the FSP1-Cre;Cdc42(fl/fl) mice died at 3 weeks of age due to overwhelming suppurative upper airway infections that were associated with neutrophilia and lymphopenia. Even though major aberrations in lymphoid tissue development were present in the mice, the principal cause of death was severe migration and killing abnormalities of the neutrophil population resulting in an inability to control infection. We also show that in addition to fibroblasts, FSP1-Cre deleted Cdc42 very efficiently in all leukocytes. Thus, by using this nonspecific Cre mouse, we inadvertently demonstrated the importance of Cdc42 in host protection from lethal infections and suggest a critical role for this small GTPase in innate immunity.
1 Communities
4 Members
0 Resources
12 MeSH Terms
CDC42 is required for tissue lamination and cell survival in the mouse retina.
Heynen SR, Meneau I, Caprara C, Samardzija M, Imsand C, Levine EM, Grimm C
(2013) PLoS One 8: e53806
MeSH Terms: Animals, Animals, Newborn, Cell Survival, Embryo, Mammalian, Gene Expression, Gene Expression Profiling, Mice, Mice, Knockout, Microvessels, Morphogenesis, Neuroglia, Neurons, Retina, cdc42 GTP-Binding Protein
Show Abstract · Added November 2, 2015
The small GTPase CDC42 has pleiotropic functions during development and in the adult. These functions include intra- as well as intercellular tasks such as organization of the cytoskeleton and, at least in epithelial cells, formation of adherens junctions. To investigate CDC42 in the neuronal retina, we generated retina-specific Cdc42-knockdown mice (Cdc42-KD) and analyzed the ensuing consequences for the developing and postnatal retina. Lack of CDC42 affected organization of the developing retina as early as E17.5, prevented correct tissue lamination, and resulted in progressive retinal degeneration and severely reduced retinal function of the postnatal retina. Despite the disorganization of the retina, formation of the primary vascular plexus was not strongly affected. However, both deeper vascular plexi developed abnormally with no clear layering of the vessels. Retinas of Cdc42-KD mice showed increased expression of pro-survival, but also of pro-apoptotic and pro-inflammatory genes and exhibited prolonged Müller glia hypertrophy. Thus, functional CDC42 is important for correct tissue organization already during retinal development. Its absence leads to severe destabilization of the postnatal retina with strong degeneration and loss of retinal function.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Modelling cell polarization driven by synthetic spatially graded Rac activation.
Holmes WR, Lin B, Levchenko A, Edelstein-Keshet L
(2012) PLoS Comput Biol 8: e1002366
MeSH Terms: Cell Membrane, Cell Polarity, Cell Shape, Computational Biology, Computer Simulation, Cytosol, Enzyme Activation, Feedback, Physiological, HeLa Cells, Humans, Models, Biological, Phosphatidylinositols, Receptor Cross-Talk, cdc42 GTP-Binding Protein, rac GTP-Binding Proteins, rho GTP-Binding Proteins
Show Abstract · Added February 26, 2016
The small GTPase Rac is known to be an important regulator of cell polarization, cytoskeletal reorganization, and motility of mammalian cells. In recent microfluidic experiments, HeLa cells endowed with appropriate constructs were subjected to gradients of the small molecule rapamycin leading to synthetic membrane recruitment of a Rac activator and direct graded activation of membrane-associated Rac. Rac activation could thus be triggered independent of upstream signaling mechanisms otherwise responsible for transducing activating gradient signals. The response of the cells to such stimulation depended on exceeding a threshold of activated Rac. Here we develop a minimal reaction-diffusion model for the GTPase network alone and for GTPase-phosphoinositide crosstalk that is consistent with experimental observations for the polarization of the cells. The modeling suggests that mutual inhibition is a more likely mode of cell polarization than positive feedback of Rac onto its own activation. We use a new analytical tool, Local Perturbation Analysis, to approximate the partial differential equations by ordinary differential equations for local and global variables. This method helps to analyze the parameter space and behaviour of the proposed models. The models and experiments suggest that (1) spatially uniform stimulation serves to sensitize a cell to applied gradients. (2) Feedback between phosphoinositides and Rho GTPases sensitizes a cell. (3) Cell lengthening/flattening accompanying polarization can increase the sensitivity of a cell and stabilize an otherwise unstable polarization.
0 Communities
1 Members
0 Resources
16 MeSH Terms