, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 123

Publication Record

Connections

Lack of consistent sex differences in D-amphetamine-induced dopamine release measured with [F]fallypride PET.
Smith CT, Dang LC, Burgess LL, Perkins SF, San Juan MD, Smith DK, Cowan RL, Le NT, Kessler RM, Samanez-Larkin GR, Zald DH
(2019) Psychopharmacology (Berl) 236: 581-590
MeSH Terms: Adult, Aged, Benzamides, Central Nervous System Stimulants, Dextroamphetamine, Dopamine, Female, Fluorine Radioisotopes, Humans, Male, Middle Aged, Positron-Emission Tomography, Receptors, Dopamine D2, Receptors, Dopamine D3, Sex Characteristics, Sex Factors, Ventral Striatum, Young Adult
Show Abstract · Added April 15, 2019
RATIONALE - Sex differences in the dopaminergic response to psychostimulants could have implications for drug abuse risk and other psychopathology involving the dopamine system, but human data are limited and mixed.
OBJECTIVES - Here, we sought to investigate sex differences in dopamine release after oral D-amphetamine administration.
METHODS - We used [F]fallypride positron emission tomography (PET) to measure the change in dopamine D2/3 receptor availability (%ΔBP, an index of dopamine release) between placebo and D-amphetamine sessions in two independent datasets containing a total of 39 females (on either hormonal birth control n = 18, postmenopausal n = 10, or studied in the first 10 days of their menstrual cycle n = 11) and 37 males.
RESULTS - Using both a priori anatomical regions of interest based on previous findings and voxelwise analyses, we failed to consistently detect broad sex differences in D-amphetamine-induced dopamine release. Nevertheless, there was limited evidence for greater right ventral striatal dopamine release in young adult males relative to similarly aged females, but this was not consistently observed across samples. Plasma estradiol did not correlate with dopamine release and this measure did not differ in females on and off hormonal birth control.
CONCLUSIONS - While our finding in young adults from one dataset of greater %ΔBP in males is partially consistent with a previously published study on sex differences in D-amphetamine-induced dopamine release, our data do not support the presence of consistent widespread sex differences in this measure of dopamine release.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Mutual activation of glutamatergic mGlu and muscarinic M receptors reverses schizophrenia-related changes in rodents.
Cieślik P, Woźniak M, Rook JM, Tantawy MN, Conn PJ, Acher F, Tokarski K, Kusek M, Pilc A, Wierońska JM
(2018) Psychopharmacology (Berl) 235: 2897-2913
MeSH Terms: Amphetamine, Animals, Antipsychotic Agents, Disease Models, Animal, Dizocilpine Maleate, Dose-Response Relationship, Drug, Excitatory Amino Acid Agonists, Male, Mice, Motor Activity, Phosphinic Acids, Receptor, Muscarinic M4, Receptors, Metabotropic Glutamate, Rodentia, Schizophrenia
Show Abstract · Added April 11, 2019
RATIONALE - Metabotropic glutamate receptors and muscarinic M receptors have been proposed as novel targets for various brain disorders, including schizophrenia. Both receptors are coupled to G proteins and are expressed in brain circuits that are important in schizophrenia. Therefore, their mutual activation may be an effective treatment and allow minimizing the doses of ligands required for optimal activity.
OBJECTIVES - In the present studies, subactive doses of mGlu and M activators (LSP4-2022 and VU152100, respectively) were administered to investigate the mutual interaction between mGlu and M receptors in animal models of schizophrenia.
METHODS - The behavioral tests used were MK-801-induced hyperactivity, (±)-2.5-dimethoxy-4-iodoamphetamine hydrochloride (DOI)-induced head twitches, the modified forced swim test, and MK-801-induced disruptions of social interactions and novel object recognition. DOI-induced spontaneous excitatory postsynaptic currents (sEPSCs) in brain slices and positron emission tomography (PET) in were used to establish the ability of these compounds to modulate the glutamatergic and dopaminergic systems. Rotarod was used to assess putative adverse effects.
RESULTS - The mutual administration of subactive doses of LSP4-2022 and VU152100 exerted similar antipsychotic-like efficacy in animals as observed for active doses of both compounds, indicating their additive actions. VU152100 inhibited the DOI-induced frequency (but not amplitude) of sEPSCs in the frontal cortex, confirming presynaptic regulation of glutamate release. Both compounds reversed amphetamine-induced decrease in D receptor levels in the striatum, as measured with [F]fallypride. The compounds did not induce any motor impartments when measured in rotarod test.
CONCLUSIONS - Based on our results, the simultaneous activation of M and mGlu receptors is beneficial in reversing MK-801- and amphetamine-induced schizophrenia-related changes in animals.
0 Communities
2 Members
0 Resources
MeSH Terms
Brief exposure to obesogenic diet disrupts brain dopamine networks.
Barry RL, Byun NE, Williams JM, Siuta MA, Tantawy MN, Speed NK, Saunders C, Galli A, Niswender KD, Avison MJ
(2018) PLoS One 13: e0191299
MeSH Terms: Amphetamine, Animals, Brain, Diet, High-Fat, Dopamine, Insulin, Male, Neostriatum, Nerve Net, Obesity, Rats, Rats, Sprague-Dawley, Receptors, Dopamine D2, Signal Transduction, Time Factors
Show Abstract · Added April 11, 2019
OBJECTIVE - We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT) activity, which fine-tunes dopamine (DA) signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week) obesogenic high-fat (HF) diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH).
METHODS - We examined the effects of a two-week HF diet on striatal DAT activity in rats, using AMPH as a probe in a functional magnetic resonance imaging (fMRI) assay, and mapped the disruption in AMPH-evoked functional connectivity between key dopaminergic targets and their projection areas using correlation and permutation analyses. We used phosphorylation of the Akt substrate GSK3α in striatal extracts as a measure of insulin receptor signaling. Finally, we confirmed the impact of HF diet on striatal DA D2 receptor (D2R) availability using [18F]fallypride positron emission tomography (PET).
RESULTS - We found that rats fed a HF diet for only two weeks have reductions in striatal Akt activity, a marker of decreased striatal insulin receptor signaling and blunted striatal responsiveness to AMPH. HF feeding also reduced interactions between elements of the mesolimbic (nucleus accumbens-anterior cingulate) and sensorimotor circuits (caudate/putamen-thalamus-sensorimotor cortex) implicated in hedonic feeding. D2R availability was reduced in HF-fed animals.
CONCLUSION - These studies support the hypothesis that central insulin signaling and dopaminergic neurotransmission are already altered after short-term HF feeding. Because AMPH induces DA efflux and brain activation, in large part via DAT, these findings suggest that blunted central nervous system insulin receptor signaling through a HF diet can impair DA homeostasis, thereby disrupting cognitive and reward circuitry involved in the regulation of hedonic feeding.
0 Communities
1 Members
0 Resources
MeSH Terms
OCD candidate gene /EAAT3 impacts basal ganglia-mediated activity and stereotypic behavior.
Zike ID, Chohan MO, Kopelman JM, Krasnow EN, Flicker D, Nautiyal KM, Bubser M, Kellendonk C, Jones CK, Stanwood G, Tanaka KF, Moore H, Ahmari SE, Veenstra-VanderWeele J
(2017) Proc Natl Acad Sci U S A 114: 5719-5724
MeSH Terms: Amphetamines, Animals, Basal Ganglia, Cell Line, Central Nervous System Stimulants, Dopamine, Excitatory Amino Acid Transporter 3, Glutamic Acid, Grooming, Maze Learning, Mice, Mice, Inbred C57BL, Mice, Transgenic, Motor Activity, Obsessive-Compulsive Disorder, Receptors, Dopamine D1, Reflex, Startle
Show Abstract · Added March 18, 2020
Obsessive-compulsive disorder (OCD) is a chronic, disabling condition with inadequate treatment options that leave most patients with substantial residual symptoms. Structural, neurochemical, and behavioral findings point to a significant role for basal ganglia circuits and for the glutamate system in OCD. Genetic linkage and association studies in OCD point to , which encodes the neuronal glutamate/aspartate/cysteine transporter excitatory amino acid transporter 3 (EAAT3)/excitatory amino acid transporter 1 (EAAC1). However, no previous studies have investigated EAAT3 in basal ganglia circuits or in relation to OCD-related behavior. Here, we report a model of loss based on an excisable STOP cassette that yields successful ablation of EAAT3 expression and function. Using amphetamine as a probe, we found that EAAT3 loss prevents expected increases in () locomotor activity, () stereotypy, and () immediate early gene induction in the dorsal striatum following amphetamine administration. Further, -STOP mice showed diminished grooming in an SKF-38393 challenge experiment, a pharmacologic model of OCD-like grooming behavior. This reduced grooming is accompanied by reduced dopamine D receptor binding in the dorsal striatum of -STOP mice. -STOP mice also exhibit reduced extracellular dopamine concentrations in the dorsal striatum both at baseline and following amphetamine challenge. Viral-mediated restoration of /EAAT3 expression in the midbrain but not in the striatum results in partial rescue of amphetamine-induced locomotion and stereotypy in -STOP mice, consistent with an impact of EAAT3 loss on presynaptic dopaminergic function. Collectively, these findings indicate that the most consistently associated OCD candidate gene impacts basal ganglia-dependent repetitive behaviors.
0 Communities
1 Members
0 Resources
MeSH Terms
Arrestin-2 and arrestin-3 differentially modulate locomotor responses and sensitization to amphetamine.
Zurkovsky L, Sedaghat K, Ahmed MR, Gurevich VV, Gurevich EV
(2017) Neuropharmacology 121: 20-29
MeSH Terms: Amphetamine, Analysis of Variance, Animals, Arrestins, Central Nervous System Stimulants, Locomotion, Mice, Mice, Inbred C57BL, Mice, Knockout, Time Factors, beta-Arrestin 1
Show Abstract · Added March 14, 2018
Arrestins play a prominent role in shutting down signaling via G protein-coupled receptors. In recent years, a signaling role for arrestins independent of their function in receptor desensitization has been discovered. Two ubiquitously expressed arrestin isoforms, arrestin-2 and arrestin-3, perform similarly in the desensitization process and share many signaling functions, enabling them to substitute for one another. However, signaling roles specific to each isoform have also been described. Mice lacking arrestin-3 (ARR3KO) were reported to show blunted acute responsiveness to the locomotor stimulatory effect of amphetamine (AMPH). It has been suggested that mice with deletion of arrestin-2 display a similar phenotype. Here we demonstrate that the AMPH-induced locomotion of male ARR3KO mice is reduced over the 7-day treatment period and during AMPH challenge after a 7-day withdrawal. The data are consistent with impaired locomotor sensitization to AMPH and suggest a role for arrestin-3-mediated signaling in the sensitization process. In contrast, male ARR2KO mice showed enhanced early responsiveness to AMPH and the lack of further sensitization, suggesting a role for impaired receptor desensitization. The comparison of mice possessing one allele of arrestin-3 and no arrestin-2 with ARR2KO littermates revealed reduced activity of the former line, consistent with a contribution of arrestin-3-mediated signaling to AMPH responses. Surprisingly, ARR3KO mice with one arrestin-2 allele showed significantly reduced locomotor responses to AMPH combined with lower novelty-induced locomotion, as compared to the ARR3KO line. These data suggest that one allele of arrestin-2 is unable to support normal locomotor behavior due to signaling and/or developmental defects.
Copyright © 2017 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Variability in paralimbic dopamine signaling correlates with subjective responses to d-amphetamine.
Smith CT, Dang LC, Cowan RL, Kessler RM, Zald DH
(2016) Neuropharmacology 108: 394-402
MeSH Terms: Administration, Oral, Adolescent, Adult, Central Nervous System Stimulants, Corpus Striatum, Dextroamphetamine, Dopamine, Humans, Male, Positron-Emission Tomography, Prefrontal Cortex, Receptors, Dopamine D2, Signal Transduction, Young Adult
Show Abstract · Added February 9, 2017
Subjective responses to psychostimulants vary, the basis of which is poorly understood, especially in relation to possible cortical contributions. Here, we tested for relationships between participants' positive subjective responses to oral d-amphetamine (dAMPH) versus placebo and variability in striatal and extrastriatal dopamine (DA) receptor availability and release, measured via positron emission tomography (PET) with the radiotracer (18)F-fallypride. Analyses focused on 35 healthy adult participants showing positive subjective effects to dAMPH measured via the Drug Effects Questionnaire (DEQ) Feel, Like, High, and Want More subscales (Responders), and were repeated after inclusion of 11 subjects who lacked subjective responses. Associations between peak DEQ subscale ratings and both baseline (18)F-fallypride binding potential (BPnd; an index of D2/D3 receptor availability) and the percentage change in BPnd post dAMPH (%ΔBPnd; a measure of DA release) were assessed. Baseline BPnd in ventromedial prefrontal cortex (vmPFC) predicted the peak level of High reported following dAMPH. Furthermore, %ΔBPnd in vmPFC positively correlated with DEQ Want More ratings. DEQ Want More was also positively correlated with %ΔBPnd in right ventral striatum and left insula. This work indicates that characteristics of DA functioning in vmPFC, a cortical area implicated in subjective valuation, are associated with both subjective high and incentive (wanting) responses. The observation that insula %ΔBPnd was associated with drug wanting converges with evidence suggesting its role in drug craving. These findings highlight the importance of variability in DA signaling in specific paralimbic cortical regions in dAMPH's subjective response, which may confer risk for abusing psychostimulants.
Copyright © 2016 Elsevier Ltd. All rights reserved.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Individual differences in timing of peak positive subjective responses to d-amphetamine: Relationship to pharmacokinetics and physiology.
Smith CT, Weafer J, Cowan RL, Kessler RM, Palmer AA, de Wit H, Zald DH
(2016) J Psychopharmacol 30: 330-43
MeSH Terms: Adult, Behavior, Addictive, Central Nervous System Stimulants, Dextroamphetamine, Dose-Response Relationship, Drug, Female, Heart Rate, Humans, Individuality, Male, Substance-Related Disorders, Surveys and Questionnaires, Young Adult
Show Abstract · Added February 9, 2017
Rate of delivery of psychostimulants has been associated with their positive euphoric effects and potential addiction liability. However, information on individual differences in onset of d-amphetamine's effects remains scarce. We examined individual differences in the time to peak subjective and physiological effects and the pharmacokinetics/pharmacodynamics of oral d-amphetamine. We considered two independent studies that used different dosing regimens where subjects completed the drug effects questionnaire at multiple time points post d-amphetamine. Based on the observation of distinct individual differences in time course of drug effects questionnaire "feel", "high", and "like" ratings (DEQH+L+F) in Study 1, subjects in both studies were categorized as early peak responders (peak within 60 minutes), late peak responders (peak > 60 minutes) or nonresponders; 20-25% of participants were categorized as early peak responders, 50-55% as late peak responders and 20-30% as nonresponders. Physiological (both studies) and plasma d-amphetamine (Study 1) were compared among these groups. Early peak responders exhibited an earlier rise in plasma d-amphetamine levels and more sustained elevation in heart rate compared to late peak responders. The present data illustrate the presence of significant individual differences in the temporal pattern of responses to oral d-amphetamine, which may contribute to heightened abuse potential.
© The Author(s) 2016.
0 Communities
2 Members
0 Resources
13 MeSH Terms
mTORC2/rictor signaling disrupts dopamine-dependent behaviors via defects in striatal dopamine neurotransmission.
Dadalko OI, Siuta M, Poe A, Erreger K, Matthies HJ, Niswender K, Galli A
(2015) J Neurosci 35: 8843-54
MeSH Terms: Amphetamine, Animals, Carrier Proteins, Dopamine, Dopamine Agents, Dopamine Plasma Membrane Transport Proteins, Dose-Response Relationship, Drug, Gene Expression Regulation, Haloperidol, In Vitro Techniques, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Motor Activity, Nestin, Oncogene Protein v-akt, Rapamycin-Insensitive Companion of mTOR Protein, Serine, Signal Transduction, Synaptic Transmission, Tyrosine 3-Monooxygenase
Show Abstract · Added February 15, 2016
Disrupted neuronal protein kinase B (Akt) signaling has been associated with dopamine (DA)-related neuropsychiatric disorders, including schizophrenia, a devastating mental illness. We hypothesize that proper DA neurotransmission is therefore dependent upon intact neuronal Akt function. Akt is activated by phosphorylation of two key residues: Thr308 and Ser473. Blunted Akt phosphorylation at Ser473 (pAkt-473) has been observed in lymphocytes and postmortem brains of schizophrenia patients, and psychosis-prone normal individuals. Mammalian target of rapamycin (mTOR) complex 2 (mTORC2) is a multiprotein complex that is responsible for phosphorylation of Akt at Ser473 (pAkt-473). We demonstrate that mice with disrupted mTORC2 signaling in brain exhibit altered striatal DA-dependent behaviors, such as increased basal locomotion, stereotypic counts, and exaggerated response to the psychomotor effects of amphetamine (AMPH). Combining in vivo and ex vivo pharmacological, electrophysiological, and biochemical techniques, we demonstrate that the changes in striatal DA neurotransmission and associated behaviors are caused, at least in part, by elevated D2 DA receptor (D2R) expression and upregulated ERK1/2 activation. Haloperidol, a typical antipsychotic and D2R blocker, reduced AMPH hypersensitivity and elevated pERK1/2 to the levels of control animals. By viral gene delivery, we downregulated mTORC2 solely in the dorsal striatum of adult wild-type mice, demonstrating that striatal mTORC2 regulates AMPH-stimulated behaviors. Our findings implicate mTORC2 signaling as a novel pathway regulating striatal DA tone and D2R signaling.
Copyright © 2015 the authors 0270-6474/15/358843-12$15.00/0.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Single-quantum-dot tracking reveals altered membrane dynamics of an attention-deficit/hyperactivity-disorder-derived dopamine transporter coding variant.
Kovtun O, Sakrikar D, Tomlinson ID, Chang JC, Arzeta-Ferrer X, Blakely RD, Rosenthal SJ
(2015) ACS Chem Neurosci 6: 526-34
MeSH Terms: Amphetamine, Attention Deficit Disorder with Hyperactivity, Cell Membrane, Central Nervous System Stimulants, Diffusion, Dopamine Plasma Membrane Transport Proteins, HEK293 Cells, Humans, Microscopy, Confocal, Microscopy, Fluorescence, Mutation, Quantum Dots, Time-Lapse Imaging
Show Abstract · Added September 28, 2015
The presynaptic, cocaine- and amphetamine-sensitive dopamine (DA) transporter (DAT, SLC6A3) controls the intensity and duration of synaptic dopamine signals by rapid clearance of DA back into presynaptic nerve terminals. Abnormalities in DAT-mediated DA clearance have been linked to a variety of neuropsychiatric disorders, including addiction, autism, and attention deficit/hyperactivity disorder (ADHD). Membrane trafficking of DAT appears to be an important, albeit incompletely understood, post-translational regulatory mechanism; its dysregulation has been recently proposed as a potential risk determinant of these disorders. In this study, we demonstrate a link between an ADHD-associated DAT mutation (Arg615Cys, R615C) and variation on DAT transporter cell surface dynamics, a combination only previously studied with ensemble biochemical and optical approaches that featured limited spatiotemporal resolution. Here, we utilize high-affinity, DAT-specific antagonist-conjugated quantum dot (QD) probes to establish the dynamic mobility of wild-type and mutant DATs at the plasma membrane of living cells. Single DAT-QD complex trajectory analysis revealed that the DAT 615C variant exhibited increased membrane mobility relative to DAT 615R, with diffusion rates comparable to those observed after lipid raft disruption. This phenomenon was accompanied by a loss of transporter mobilization triggered by amphetamine, a common component of ADHD medications. Together, our data provides the first dynamic imaging of single DAT proteins, providing new insights into the relationship between surface dynamics and trafficking of both wild-type and disease-associated transporters. Our approach should be generalizable to future studies that explore the possibilities of perturbed surface DAT dynamics that may arise as a consequence of genetic alterations, regulatory changes, and drug use that contribute to the etiology or treatment of neuropsychiatric disorders.
0 Communities
3 Members
0 Resources
13 MeSH Terms
The rare DAT coding variant Val559 perturbs DA neuron function, changes behavior, and alters in vivo responses to psychostimulants.
Mergy MA, Gowrishankar R, Gresch PJ, Gantz SC, Williams J, Davis GL, Wheeler CA, Stanwood GD, Hahn MK, Blakely RD
(2014) Proc Natl Acad Sci U S A 111: E4779-88
MeSH Terms: Amino Acid Substitution, Amphetamine, Animals, Behavior, Animal, Central Nervous System Stimulants, Dopamine, Dopamine Plasma Membrane Transport Proteins, Dopaminergic Neurons, Female, Humans, Male, Mental Disorders, Mice, Mutation, Missense, Receptors, Dopamine D2
Show Abstract · Added October 23, 2014
Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness.
1 Communities
2 Members
0 Resources
15 MeSH Terms