Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 173

Publication Record

Connections

Regulation of tissue iron homeostasis: the macrophage "ferrostat".
Winn NC, Volk KM, Hasty AH
(2020) JCI Insight 5:
MeSH Terms: Adipose Tissue, Animals, Bone Marrow, Bone and Bones, Central Nervous System, Disease, Erythropoiesis, Health, Homeostasis, Humans, Iron, Liver, Macrophages, Muscle, Skeletal, Myocardium, Pancreas, Skin, Spleen, Wound Healing
Show Abstract · Added March 3, 2020
Iron is an essential element for multiple fundamental biological processes required for life; yet iron overload can be cytotoxic. Consequently, iron concentrations at the cellular and tissue level must be exquisitely governed by mechanisms that complement and fine-tune systemic control. It is well appreciated that macrophages are vital for systemic iron homeostasis, supplying or sequestering iron as needed for erythropoiesis or bacteriostasis, respectively. Indeed, recycling of iron through erythrophagocytosis by splenic macrophages is a major contributor to systemic iron homeostasis. However, accumulating evidence suggests that tissue-resident macrophages regulate local iron availability and modulate the tissue microenvironment, contributing to cellular and tissue function. Here, we summarize the significance of tissue-specific regulation of iron availability and highlight how resident macrophages are critical for this process. This tissue-dependent regulation has broad implications for understanding both resident macrophage function and tissue iron homeostasis in health and disease.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Heterogeneity within Stratified Epithelial Stem Cell Populations Maintains the Oral Mucosa in Response to Physiological Stress.
Byrd KM, Piehl NC, Patel JH, Huh WJ, Sequeira I, Lough KJ, Wagner BL, Marangoni P, Watt FM, Klein OD, Coffey RJ, Williams SE
(2019) Cell Stem Cell 25: 814-829.e6
MeSH Terms: Animals, Cell Division, Cell Lineage, Cells, Cultured, Female, Flow Cytometry, Fluorescence, Immunohistochemistry, Male, Membrane Glycoproteins, Mice, Mouth Mucosa, Nerve Tissue Proteins, Stem Cells, Wound Healing
Show Abstract · Added March 3, 2020
Stem cells in stratified epithelia are generally believed to adhere to a non-hierarchical single-progenitor model. Using lineage tracing and genetic label-retention assays, we show that the hard palatal epithelium of the oral cavity is unique in displaying marked proliferative heterogeneity. We identify a previously uncharacterized, infrequently-dividing stem cell population that resides within a candidate niche, the junctional zone (JZ). JZ stem cells tend to self-renew by planar symmetric divisions, respond to masticatory stresses, and promote wound healing, whereas frequently-dividing cells reside outside the JZ, preferentially renew through perpendicular asymmetric divisions, and are less responsive to injury. LRIG1 is enriched in the infrequently-dividing population in homeostasis, dynamically changes expression in response to tissue stresses, and promotes quiescence, whereas Igfbp5 preferentially labels a rapidly-growing, differentiation-prone population. These studies establish the oral mucosa as an important model system to study epithelial stem cell populations and how they respond to tissue stresses.
Copyright © 2019 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Identification of a pro-angiogenic functional role for FSP1-positive fibroblast subtype in wound healing.
Saraswati S, Marrow SMW, Watch LA, Young PP
(2019) Nat Commun 10: 3027
MeSH Terms: Actins, Animals, Bone Marrow Transplantation, Calcium-Binding Proteins, Cell Differentiation, Disease Models, Animal, Fibroblasts, Fibrosis, Green Fluorescent Proteins, Human Umbilical Vein Endothelial Cells, Humans, Mice, Mice, Inbred C57BL, Mice, Transgenic, Myocardial Infarction, Myocardium, Neovascularization, Physiologic, S100 Calcium-Binding Protein A4, Transplantation Chimera, Wound Healing
Show Abstract · Added March 24, 2020
Fibrosis accompanying wound healing can drive the failure of many different organs. Activated fibroblasts are the principal determinants of post-injury pathological fibrosis along with physiological repair, making them a difficult therapeutic target. Although activated fibroblasts are phenotypically heterogeneous, they are not recognized as distinct functional entities. Using mice that express GFP under the FSP1 or αSMA promoter, we characterized two non-overlapping fibroblast subtypes from mouse hearts after myocardial infarction. Here, we report the identification of FSP1-GFP cells as a non-pericyte, non-hematopoietic fibroblast subpopulation with a predominant pro-angiogenic role, characterized by in vitro phenotypic/cellular/ultrastructural studies and in vivo granulation tissue formation assays combined with transcriptomics and proteomics. This work identifies a fibroblast subtype that is functionally distinct from the pro-fibrotic αSMA-expressing myofibroblast subtype. Our study has the potential to shift our focus towards viewing fibroblasts as molecularly and functionally heterogeneous and provides a paradigm to approach treatment for organ fibrosis.
0 Communities
1 Members
0 Resources
MeSH Terms
p73 regulates epidermal wound healing and induced keratinocyte programming.
Beeler JS, Marshall CB, Gonzalez-Ericsson PI, Shaver TM, Santos Guasch GL, Lea ST, Johnson KN, Jin H, Venters BJ, Sanders ME, Pietenpol JA
(2019) PLoS One 14: e0218458
MeSH Terms: Animals, Cell Proliferation, DNA Damage, Ectoderm, Epithelial Cells, Gene Expression Regulation, Developmental, Hair Follicle, Humans, Keratinocytes, Mice, Mice, Knockout, Single-Cell Analysis, Skin, Stem Cell Niche, Trans-Activators, Tumor Protein p73, Wound Healing
Show Abstract · Added June 28, 2019
p63 is a transcriptional regulator of ectodermal development that is required for basal cell proliferation and stem cell maintenance. p73 is a closely related p53 family member that is expressed in select p63-positive basal cells and can heterodimerize with p63. p73-/- mice lack multiciliated cells and have reduced numbers of basal epithelial cells in select tissues; however, the role of p73 in basal epithelial cells is unknown. Herein, we show that p73-deficient mice exhibit delayed wound healing despite morphologically normal-appearing skin. The delay in wound healing is accompanied by decreased proliferation and increased levels of biomarkers of the DNA damage response in basal keratinocytes at the epidermal wound edge. In wild-type mice, this same cell population exhibited increased p73 expression after wounding. Analyzing single-cell transcriptomic data, we found that p73 was expressed by epidermal and hair follicle stem cells, cell types required for wound healing. Moreover, we discovered that p73 isoforms expressed in the skin (ΔNp73) enhance p63-mediated expression of keratinocyte genes during cellular reprogramming from a mesenchymal to basal keratinocyte-like cell. We identified a set of 44 genes directly or indirectly regulated by ΔNp73 that are involved in skin development, cell junctions, cornification, proliferation, and wound healing. Our results establish a role for p73 in cutaneous wound healing through regulation of basal keratinocyte function.
1 Communities
1 Members
0 Resources
17 MeSH Terms
A Clinical Review of Diabetic Foot Infections.
Chastain CA, Klopfenstein N, Serezani CH, Aronoff DM
(2019) Clin Podiatr Med Surg 36: 381-395
MeSH Terms: Anti-Bacterial Agents, Debridement, Diabetic Foot, Drug Resistance, Microbial, Humans, Infectious Disease Medicine, Osteomyelitis, Risk Factors, Wound Healing
Show Abstract · Added March 18, 2020
"Diabetic foot infections (DFIs) are a common cause of morbidity and mortality. This article summarizes current knowledge regarding DFI epidemiology, disease pathogenesis, and the impact of antimicrobial resistance among DFI. An evidence-based approach to clinical assessment, diagnosing osteomyelitis, as well as medical and surgical treatment is discussed, including a review of empiric and directed antibiotic treatment recommendations. The current state and needs of the clinical literature are identified throughout, with a discussion of the supporting role of infectious diseases specialists as well as future directions of the field."
Copyright © 2019 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Late immune consequences of combat trauma: a review of trauma-related immune dysfunction and potential therapies.
Thompson KB, Krispinsky LT, Stark RJ
(2019) Mil Med Res 6: 11
MeSH Terms: Adaptive Immunity, Humans, Immunity, Innate, Immunomodulation, Military Personnel, Multiple Organ Failure, Systemic Inflammatory Response Syndrome, Wound Healing, Wounds and Injuries
Show Abstract · Added April 25, 2019
With improvements in personnel and vehicular body armor, robust casualty evacuation capabilities, and damage control resuscitation strategies, more combat casualties are surviving to reach higher levels of care throughout the casualty evacuation system. As such, medical centers are becoming more accustomed to managing the deleterious late consequences of combat trauma related to the dysregulation of the immune system. In this review, we aim to highlight these late consequences and identify areas for future research and therapeutic strategies. Trauma leads to the dysregulation of both the innate and adaptive immune responses, which places the injured at risk for several late consequences, including delayed wound healing, late onset sepsis and infection, multi-organ dysfunction syndrome, and acute respiratory distress syndrome, which are significant for their association with the increased morbidity and mortality of wounded personnel. The mechanisms by which these consequences develop are complex but include an imbalance of the immune system leading to robust inflammatory responses, triggered by the presence of damage-associated molecules and other immune-modifying agents following trauma. Treatment strategies to improve outcomes have been difficult to develop as the immunophenotype of injured personnel following trauma is variable, fluid and difficult to determine. As more information regarding the triggers that lead to immune dysfunction following trauma is elucidated, it may be possible to identify the immunophenotype of injured personnel and provide targeted treatments to reduce the late consequences of trauma, which are known to lead to significant morbidity and mortality.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Discovering small molecules as Wnt inhibitors that promote heart regeneration and injury repair.
Xie S, Fu W, Yu G, Hu X, Lai KS, Peng X, Zhou Y, Zhu X, Christov P, Sawyer L, Ni TT, Sulikowski GA, Yang Z, Lee E, Zeng C, Wang WE, Zhong TP
(2020) J Mol Cell Biol 12: 42-54
MeSH Terms: Animals, Animals, Genetically Modified, Cell Differentiation, Cell Line, Cell Proliferation, Disease Models, Animal, Heart Injuries, Male, Mice, Mice, Inbred C57BL, Mouse Embryonic Stem Cells, Myocardial Infarction, Myocytes, Cardiac, Regenerative Medicine, Signal Transduction, Small Molecule Libraries, Wnt Proteins, Wnt Signaling Pathway, Wound Healing, Zebrafish, Zebrafish Proteins, beta Catenin
Show Abstract · Added April 10, 2019
There are intense interests in discovering proregenerative medicine leads that can promote cardiac differentiation and regeneration, as well as repair damaged heart tissues. We have combined zebrafish embryo-based screens with cardiomyogenesis assays to discover selective small molecules that modulate heart development and regeneration with minimal adverse effects. Two related compounds with novel structures, named as Cardiomogen 1 and 2 (CDMG1 and CDMG2), were identified for their capacity to promote myocardial hyperplasia through expansion of the cardiac progenitor cell population. We find that Cardiomogen acts as a Wnt inhibitor by targeting β-catenin and reducing Tcf/Lef-mediated transcription in cultured cells. CDMG treatment of amputated zebrafish hearts reduces nuclear β-catenin in injured heart tissue, increases cardiomyocyte (CM) proliferation, and expedites wound healing, thus accelerating cardiac muscle regeneration. Importantly, Cardiomogen can alleviate the functional deterioration of mammalian hearts after myocardial infarction. Injured hearts exposed to CDMG1 display increased newly formed CMs and reduced fibrotic scar tissue, which are in part attributable to the β-catenin reduction. Our findings indicate Cardiomogen as a Wnt inhibitor in enhancing injury-induced CM proliferation and heart regeneration, highlighting the values of embryo-based small molecule screens in discovery of effective and safe medicine leads.
© The Author(s) (2019). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Cyclin G1 and TASCC regulate kidney epithelial cell G-M arrest and fibrotic maladaptive repair.
Canaud G, Brooks CR, Kishi S, Taguchi K, Nishimura K, Magassa S, Scott A, Hsiao LL, Ichimura T, Terzi F, Yang L, Bonventre JV
(2019) Sci Transl Med 11:
MeSH Terms: Animals, Autophagy, Cell Compartmentation, Cell Cycle Checkpoints, Cell Dedifferentiation, Cyclin G1, Disease Models, Animal, Disease Progression, Epithelial Cells, Fibrosis, Humans, Kidney, Kidney Tubules, Proximal, LLC-PK1 Cells, Male, Mice, Renal Insufficiency, Chronic, Swine, TOR Serine-Threonine Kinases, Wound Healing
Show Abstract · Added March 14, 2019
Fibrosis contributes to the progression of chronic kidney disease (CKD). Severe acute kidney injury can lead to CKD through proximal tubular cell (PTC) cycle arrest in the G-M phase, with secretion of profibrotic factors. Here, we show that epithelial cells in the G-M phase form target of rapamycin (TOR)-autophagy spatial coupling compartments (TASCCs), which promote profibrotic secretion similar to the senescence-associated secretory phenotype. Cyclin G1 (CG1), an atypical cyclin, promoted G-M arrest in PTCs and up-regulated TASCC formation. PTC TASCC formation was also present in humans with CKD. Prevention of TASCC formation in cultured PTCs blocked secretion of profibrotic factors. PTC-specific knockout of a key TASCC component reduced the rate of kidney fibrosis progression in mice with CKD. CG1 induction and TASCC formation also occur in liver fibrosis. Deletion of CG1 reduced G-M phase cells and TASCC formation in vivo. This study provides mechanistic evidence supporting how profibrotic G-M arrest is induced in kidney injury and how G-M-arrested PTCs promote fibrosis, identifying new therapeutic targets to mitigate kidney fibrosis.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
20 MeSH Terms
The altered mechanical phenotype of fetal fibroblasts hinders myofibroblast differentiation.
Jerrell RJ, Leih MJ, Parekh A
(2019) Wound Repair Regen 27: 29-38
MeSH Terms: Adult, Cell Differentiation, Cells, Cultured, Cicatrix, Collagen Type III, Extracellular Matrix, Female, Fetus, Fibroblasts, Gene Expression Regulation, Humans, Male, Myofibroblasts, Phenotype, Pregnancy, Transforming Growth Factor beta1, Wound Healing, Young Adult
Show Abstract · Added March 18, 2020
During the dermal wound healing process, the mechanical rigidity of the newly deposited extracellular matrix and transforming growth factor-β1 promote the transition of fibroblasts into myofibroblasts. Myofibroblasts generate large cellular forces that contract and remodel the extracellular matrix leading to scar formation. In contrast, myofibroblasts are not detected in fetal dermal wounds which are more compliant and contain less transforming growth factor-β1 than adult wounds. Instead, fetal fibroblasts orchestrate scarless healing of dermal wounds resulting in healed tissues that resemble uninjured dermis. While these biomechanical differences suggest that the fetal wound environment promotes smaller cellular forces which enable regeneration, previous studies indicate that fetal fibroblasts have unique contractile properties that may facilitate scarless dermal repair. Therefore, we tested whether physiologic wound rigidities and transforming growth factor-β1 induce contractile forces and myofibroblast differentiation of fetal dermal fibroblasts. In comparison to their adult dermal counterparts, we found that fetal fibroblasts exhibit a deficient contractile response to rigid extracellular matrix and transforming growth factor-β1. Our data suggest that the contractile phenotype of fetal dermal fibroblasts limits their cellular force production and prevents their ability to differentiate into myofibroblasts.
© 2018 The Authors. Wound Repair and Regeneration published by Wiley Periodicals, Inc. on behalf of by the Wound Healing Society.
0 Communities
1 Members
0 Resources
MeSH Terms
The Immune Landscape of Cancer.
Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, Ziv E, Culhane AC, Paull EO, Sivakumar IKA, Gentles AJ, Malhotra R, Farshidfar F, Colaprico A, Parker JS, Mose LE, Vo NS, Liu J, Liu Y, Rader J, Dhankani V, Reynolds SM, Bowlby R, Califano A, Cherniack AD, Anastassiou D, Bedognetti D, Mokrab Y, Newman AM, Rao A, Chen K, Krasnitz A, Hu H, Malta TM, Noushmehr H, Pedamallu CS, Bullman S, Ojesina AI, Lamb A, Zhou W, Shen H, Choueiri TK, Weinstein JN, Guinney J, Saltz J, Holt RA, Rabkin CS, Cancer Genome Atlas Research Network, Lazar AJ, Serody JS, Demicco EG, Disis ML, Vincent BG, Shmulevich I
(2018) Immunity 48: 812-830.e14
MeSH Terms: Adolescent, Adult, Aged, Aged, 80 and over, Child, Female, Genomics, Humans, Interferon-gamma, Macrophages, Male, Middle Aged, Neoplasms, Prognosis, Th1-Th2 Balance, Transforming Growth Factor beta, Wound Healing, Young Adult
Show Abstract · Added October 30, 2019
We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-β dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms