Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 18

Publication Record

Connections

Protein identification strategies in MALDI imaging mass spectrometry: a brief review.
Ryan DJ, Spraggins JM, Caprioli RM
(2019) Curr Opin Chem Biol 48: 64-72
MeSH Terms: Animals, Equipment Design, Humans, Molecular Imaging, Proteins, Specimen Handling, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Workflow
Show Abstract · Added March 26, 2019
Matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a powerful technology used to investigate the spatial distributions of thousands of molecules throughout a tissue section from a single experiment. As proteins represent an important group of functional molecules in tissue and cells, the imaging of proteins has been an important point of focus in the development of IMS technologies and methods. Protein identification is crucial for the biological contextualization of molecular imaging data. However, gas-phase fragmentation efficiency of MALDI generated proteins presents significant challenges, making protein identification directly from tissue difficult. This review highlights methods and technologies specifically related to protein identification that have been developed to overcome these challenges in MALDI IMS experiments.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
2 Members
0 Resources
8 MeSH Terms
Quantitative assessment of cell population diversity in single-cell landscapes.
Liu Q, Herring CA, Sheng Q, Ping J, Simmons AJ, Chen B, Banerjee A, Li W, Gu G, Coffey RJ, Shyr Y, Lau KS
(2018) PLoS Biol 16: e2006687
MeSH Terms: Animals, Brain, CD4-Positive T-Lymphocytes, CD8-Positive T-Lymphocytes, Cluster Analysis, Computer Simulation, Databases, Nucleic Acid, Gene Expression Profiling, Humans, Intestinal Mucosa, Mice, Mice, Inbred C57BL, Models, Biological, Neoplasms, Experimental, Oligodendroglia, Sequence Analysis, RNA, Single-Cell Analysis, Software, Workflow
Show Abstract · Added December 4, 2020
Single-cell RNA sequencing (scRNA-seq) has become a powerful tool for the systematic investigation of cellular diversity. As a number of computational tools have been developed to identify and visualize cell populations within a single scRNA-seq dataset, there is a need for methods to quantitatively and statistically define proportional shifts in cell population structures across datasets, such as expansion or shrinkage or emergence or disappearance of cell populations. Here we present sc-UniFrac, a framework to statistically quantify compositional diversity in cell populations between single-cell transcriptome landscapes. sc-UniFrac enables sensitive and robust quantification in simulated and experimental datasets in terms of both population identity and quantity. We have demonstrated the utility of sc-UniFrac in multiple applications, including assessment of biological and technical replicates, classification of tissue phenotypes and regional specification, identification and definition of altered cell infiltrates in tumorigenesis, and benchmarking batch-correction tools. sc-UniFrac provides a framework for quantifying diversity or alterations in cell populations across conditions and has broad utility for gaining insight into tissue-level perturbations at the single-cell resolution.
1 Communities
0 Members
0 Resources
MeSH Terms
CalR: A Web-Based Analysis Tool for Indirect Calorimetry Experiments.
Mina AI, LeClair RA, LeClair KB, Cohen DE, Lantier L, Banks AS
(2018) Cell Metab 28: 656-666.e1
MeSH Terms: Analysis of Variance, Animals, Calorimetry, Indirect, Cloud Computing, Data Visualization, Energy Metabolism, Humans, Linear Models, Mice, Obesity, Pulmonary Gas Exchange, Reproducibility of Results, Thermogenesis, Web Browser, Weight Loss, Workflow
Show Abstract · Added May 16, 2019
We report a web-based tool for analysis of experiments using indirect calorimetry to measure physiological energy balance. CalR simplifies the process to import raw data files, generate plots, and determine the most appropriate statistical tests for interpretation. Analysis using the generalized linear model (which includes ANOVA and ANCOVA) allows for flexibility in interpreting diverse experimental designs, including those of obesity and thermogenesis. Users also may produce standardized output files for an experiment that can be shared and subsequently re-evaluated using CalR. This framework will provide the transparency necessary to enhance consistency, rigor, and reproducibility. The CalR analysis software will greatly increase the speed and efficiency with which metabolic experiments can be organized, analyzed per accepted norms, and reproduced and will likely become a standard tool for the field. CalR is accessible at https://CalRapp.org/.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Micro-Data-Independent Acquisition for High-Throughput Proteomics and Sensitive Peptide Mass Spectrum Identification.
Heaven MR, Cobbs AL, Nei YW, Gutierrez DB, Herren AW, Gunawardena HP, Caprioli RM, Norris JL
(2018) Anal Chem 90: 8905-8911
MeSH Terms: Algorithms, Chromatography, Liquid, Databases, Protein, Escherichia coli, Escherichia coli Proteins, HeLa Cells, High-Throughput Screening Assays, Humans, Peptides, Proteome, Proteomics, Software, Tandem Mass Spectrometry, Workflow
Show Abstract · Added August 27, 2018
State-of-the-art strategies for proteomics are not able to rapidly interrogate complex peptide mixtures in an untargeted manner with sensitive peptide and protein identification rates. We describe a data-independent acquisition (DIA) approach, microDIA (μDIA), that applies a novel tandem mass spectrometry (MS/MS) mass spectral deconvolution method to increase the specificity of tandem mass spectra acquired during proteomics experiments. Using the μDIA approach with a 10 min liquid chromatography gradient allowed detection of 3.1-fold more HeLa proteins than the results obtained from data-dependent acquisition (DDA) of the same samples. Additionally, we found the μDIA MS/MS deconvolution procedure is critical for resolving modified peptides with relatively small precursor mass shifts that cause the same peptide sequence in modified and unmodified forms to theoretically cofragment in the same raw MS/MS spectra. The μDIA workflow is implemented in the PROTALIZER software tool which fully automates tandem mass spectral deconvolution, queries every peptide with a library-free search algorithm against a user-defined protein database, and confidently identifies multiple peptides in a single tandem mass spectrum. We also benchmarked μDIA against DDA using a 90 min gradient analysis of HeLa and Escherichia coli peptides that were mixed in predefined quantitative ratios, and our results showed μDIA provided 24% more true positives at the same false positive rate.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Improving the discovery of secondary metabolite natural products using ion mobility-mass spectrometry.
Schrimpe-Rutledge AC, Sherrod SD, McLean JA
(2018) Curr Opin Chem Biol 42: 160-166
MeSH Terms: Biological Products, Drug Discovery, Ion Mobility Spectrometry, Mass Spectrometry, Metabolomics, Molecular Structure, Workflow
Show Abstract · Added December 17, 2018
Secondary metabolite discovery requires an unbiased, comprehensive workflow to detect unknown unknowns for which little to no molecular knowledge exists. Untargeted mass spectrometry-based metabolomics is a powerful platform, particularly when coupled with ion mobility for high-throughput gas-phase separations to increase peak capacity and obtain gas-phase structural information. Ion mobility data are described by the amount of time an ion spends in the drift cell, which is directly related to an ion's collision cross section (CCS). The CCS parameter describes the size, shape, and charge of a molecule and can be used to characterize unknown metabolomic species. Here, we describe current and emerging applications of ion mobility-mass spectrometry for prioritization, discovery and structure elucidation, and spatial/temporal characterization.
Copyright © 2017 Elsevier Ltd. All rights reserved.
1 Communities
1 Members
0 Resources
7 MeSH Terms
Learning bundled care opportunities from electronic medical records.
Chen Y, Kho AN, Liebovitz D, Ivory C, Osmundson S, Bian J, Malin BA
(2018) J Biomed Inform 77: 1-10
MeSH Terms: Comorbidity, Data Mining, Delivery of Health Care, Electronic Health Records, Humans, Machine Learning, Medical Informatics, Patient Care Bundles, Patient Care Management, Phenotype, Workflow
Show Abstract · Added April 10, 2018
OBJECTIVE - The traditional fee-for-service approach to healthcare can lead to the management of a patient's conditions in a siloed manner, inducing various negative consequences. It has been recognized that a bundled approach to healthcare - one that manages a collection of health conditions together - may enable greater efficacy and cost savings. However, it is not always evident which sets of conditions should be managed in a bundled manner. In this study, we investigate if a data-driven approach can automatically learn potential bundles.
METHODS - We designed a framework to infer health condition collections (HCCs) based on the similarity of their clinical workflows, according to electronic medical record (EMR) utilization. We evaluated the framework with data from over 16,500 inpatient stays from Northwestern Memorial Hospital in Chicago, Illinois. The plausibility of the inferred HCCs for bundled care was assessed through an online survey of a panel of five experts, whose responses were analyzed via an analysis of variance (ANOVA) at a 95% confidence level. We further assessed the face validity of the HCCs using evidence in the published literature.
RESULTS - The framework inferred four HCCs, indicative of (1) fetal abnormalities, (2) late pregnancies, (3) prostate problems, and (4) chronic diseases, with congestive heart failure featuring prominently. Each HCC was substantiated with evidence in the literature and was deemed plausible for bundled care by the experts at a statistically significant level.
CONCLUSIONS - The findings suggest that an automated EMR data-driven framework conducted can provide a basis for discovering bundled care opportunities. Still, translating such findings into actual care management will require further refinement, implementation, and evaluation.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Learning Clinical Workflows to Identify Subgroups of Heart Failure Patients.
Yan C, Chen Y, Li B, Liebovitz D, Malin B
(2016) AMIA Annu Symp Proc 2016: 1248-1257
MeSH Terms: Algorithms, Comorbidity, Datasets as Topic, Heart Failure, Humans, Patient Care Management, Quality of Life, Workflow
Show Abstract · Added April 10, 2018
Heart Failure (HF) is one of the most common indications for readmission to the hospital among elderly patients. This is due to the progressive nature of the disease, as well as its association with complex comorbidities (e.g., anemia, chronic kidney disease, chronic obstructive pulmonary disease, hyper- and hypothyroidism), which contribute to increased morbidity and mortality, as well as a reduced quality of life. Healthcare organizations (HCOs) have established diverse treatment plans for HF patients, but such routines are not always formalized and may, in fact, arise organically as a patient's management evolves over time. This investigation was motivated by the hypothesis that patients associated with a certain subgroup of HF should follow a similar workflow that, once made explicit, could be leveraged by an HCO to more effectively allocate resources and manage HF patients. Thus, in this paper, we introduce a method to identify subgroups of HF through a similarity analysis of event sequences documented in the clinical setting. Specifically, we 1) structure event sequences for HF patients based on the patterns of electronic medical record (EMR) system utilization, 2) identify subgroups of HF patients by applying a k-means clustering algorithm on utilization patterns, 3) learn clinical workflows for each subgroup, and 4) label each subgroup with diagnosis and procedure codes that are distinguishing in the set of all subgroups. To demonstrate its potential, we applied our method to EMR event logs for 785 HF inpatient stays over a 4 month period at a large academic medical center. Our method identified 8 subgroups of HF, each of which was found to associate with a canonical workflow inferred through an inductive mining algorithm. Each subgroup was further confirmed to be affiliated with specific comorbidities, such as hyperthyroidism and hypothyroidism.
0 Communities
1 Members
0 Resources
MeSH Terms
Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data.
Shen XX, Zhou X, Kominek J, Kurtzman CP, Hittinger CT, Rokas A
(2016) G3 (Bethesda) 6: 3927-3939
MeSH Terms: Ascomycota, Computational Biology, Genetic Markers, Genome, Fungal, Genomics, Phylogeny, Workflow
Show Abstract · Added April 6, 2017
Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multilocus data sets has greatly advanced our understanding of the yeast phylogeny, but many deep relationships remain unsupported. In contrast, phylogenomic analyses have involved relatively few taxa and lineages that were often selected with limited considerations for covering the breadth of yeast biodiversity. Here we used genome sequence data from 86 publicly available yeast genomes representing nine of the 11 known major lineages and 10 nonyeast fungal outgroups to generate a 1233-gene, 96-taxon data matrix. Species phylogenies reconstructed using two different methods (concatenation and coalescence) and two data matrices (amino acids or the first two codon positions) yielded identical and highly supported relationships between the nine major lineages. Aside from the lineage comprised by the family Pichiaceae, all other lineages were monophyletic. Most interrelationships among yeast species were robust across the two methods and data matrices. However, eight of the 93 internodes conflicted between analyses or data sets, including the placements of: the clade defined by species that have reassigned the CUG codon to encode serine, instead of leucine; the clade defined by a whole genome duplication; and the species Ascoidea rubescens These phylogenomic analyses provide a robust roadmap for future comparative work across the yeast subphylum in the disciplines of taxonomy, molecular genetics, evolutionary biology, ecology, and biotechnology. To further this end, we have also provided a BLAST server to query the 86 Saccharomycotina genomes, which can be found at http://y1000plus.org/blast.
Copyright © 2016 Shen et al.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Inferring Clinical Workflow Efficiency via Electronic Medical Record Utilization.
Chen Y, Xie W, Gunter CA, Liebovitz D, Mehrotra S, Zhang H, Malin B
(2015) AMIA Annu Symp Proc 2015: 416-25
MeSH Terms: Algorithms, Data Mining, Efficiency, Organizational, Electronic Health Records, Hospitals, Humans, Workflow
Show Abstract · Added April 10, 2018
Complexity in clinical workflows can lead to inefficiency in making diagnoses, ineffectiveness of treatment plans and uninformed management of healthcare organizations (HCOs). Traditional strategies to manage workflow complexity are based on measuring the gaps between workflows defined by HCO administrators and the actual processes followed by staff in the clinic. However, existing methods tend to neglect the influences of EMR systems on the utilization of workflows, which could be leveraged to optimize workflows facilitated through the EMR. In this paper, we introduce a framework to infer clinical workflows through the utilization of an EMR and show how such workflows roughly partition into four types according to their efficiency. Our framework infers workflows at several levels of granularity through data mining technologies. We study four months of EMR event logs from a large medical center, including 16,569 inpatient stays, and illustrate that over approximately 95% of workflows are efficient and that 80% of patients are on such workflows. At the same time, we show that the remaining 5% of workflows may be inefficient due to a variety of factors, such as complex patients.
0 Communities
1 Members
0 Resources
MeSH Terms
An informatics-enabled approach for detection of new tumor registry cases.
Naser R, Roberts J, Salter T, Warner JL, Levy M
(2014) J Registry Manag 41: 19-23
MeSH Terms: Algorithms, Humans, Incidence, Medical Informatics Applications, Neoplasms, Population Surveillance, Registries, Tennessee, Workflow
Show Abstract · Added June 11, 2014
Tumor registries are held to a very high standard for identifying and reporting new analytic cancer cases. However, current approaches to new case detection are often inefficient and costly. Efficient and effective detection of new cancer cases has the potential to maintain a high accuracy of reporting while reducing costs, increasing timeliness of reporting, and ultimately advancing cancer research. We describe the development, implementation, and evaluation of an informatics tool that integrates multiple data sources to support the workflow of new case identification at the Vanderbilt University Medical Center (VUMC) tumor registry office. The new system reduced the total number of potential cases to analyze from roughly 13,000 to 2,500 records per month. This resulted in an efficiency gain of roughly 80 man hours per month with a respective annual savings of approximately 50,000 dollars. Further iterative refinement of this approach along with support for case abstraction could result in further efficiencies.
0 Communities
1 Members
0 Resources
9 MeSH Terms