Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 10

Publication Record

Connections

An In Vivo Gain-of-Function Screen Identifies the Williams-Beuren Syndrome Gene GTF2IRD1 as a Mammary Tumor Promoter.
Huo Y, Su T, Cai Q, Macara IG
(2016) Cell Rep 15: 2089-2096
MeSH Terms: Animals, Bone Morphogenetic Protein Receptors, Type I, Breast Neoplasms, Carcinogenesis, Female, Gene Expression Regulation, Neoplastic, Genetic Testing, Humans, Mammary Neoplasms, Animal, Mice, Transgenic, Muscle Proteins, Nuclear Proteins, Protein-Serine-Threonine Kinases, Receptor, Transforming Growth Factor-beta Type II, Receptors, Transforming Growth Factor beta, Trans-Activators, Williams Syndrome
Show Abstract · Added April 3, 2018
The broad implementation of precision medicine in cancer is impeded by the lack of a complete inventory of the genes involved in tumorigenesis. We performed in vivo screening of ∼1,000 genes that are associated with signaling for positive roles in breast cancer, using lentiviral expression vectors in primary MMTV-ErbB2 mammary tissue. Gain of function of five genes, including RET, GTF2IRD1, ADORA1, LARS2, and DPP8, significantly promoted mammary tumor growth. We further studied one tumor-promoting gene, the transcription factor GTF2IRD1. The mis-regulation of genes downstream of GTF2IRD1, including TβR2 and BMPR1b, also individually promoted mammary cancer development, and silencing of TβR2 suppressed GTF2IRD1-driven tumor promotion. In addition, GTF2IRD1 is highly expressed in human breast tumors, correlating with high tumor grades and poor prognosis. Our in vivo approach is readily expandable to whole-genome annotation of tumor-promoting genes.
Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
17 MeSH Terms
Resting-State Functional Connectivity in Individuals with Down Syndrome and Williams Syndrome Compared with Typically Developing Controls.
Vega JN, Hohman TJ, Pryweller JR, Dykens EM, Thornton-Wells TA
(2015) Brain Connect 5: 461-75
MeSH Terms: Adult, Apolipoproteins E, Attention, Brain, Case-Control Studies, Comprehension, Connectome, Down Syndrome, Female, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Neural Pathways, Williams Syndrome, Young Adult
Show Abstract · Added April 10, 2018
The emergence of resting-state functional connectivity (rsFC) analysis, which examines temporal correlations of low-frequency (<0.1 Hz) blood oxygen level-dependent signal fluctuations between brain regions, has dramatically improved our understanding of the functional architecture of the typically developing (TD) human brain. This study examined rsFC in Down syndrome (DS) compared with another neurodevelopmental disorder, Williams syndrome (WS), and TD. Ten subjects with DS, 18 subjects with WS, and 40 subjects with TD each participated in a 3-Tesla MRI scan. We tested for group differences (DS vs. TD, DS vs. WS, and WS vs. TD) in between- and within-network rsFC connectivity for seven functional networks. For the DS group, we also examined associations between rsFC and other cognitive and genetic risk factors. In DS compared with TD, we observed higher levels of between-network connectivity in 6 out 21 network pairs but no differences in within-network connectivity. Participants with WS showed lower levels of within-network connectivity and no significant differences in between-network connectivity relative to DS. Finally, our comparison between WS and TD controls revealed lower within-network connectivity in multiple networks and higher between-network connectivity in one network pair relative to TD controls. While preliminary due to modest sample sizes, our findings suggest a global difference in between-network connectivity in individuals with neurodevelopmental disorders compared with controls and that such a difference is exacerbated across many brain regions in DS. However, this alteration in DS does not appear to extend to within-network connections, and therefore, the altered between-network connectivity must be interpreted within the framework of an intact intra-network pattern of activity. In contrast, WS shows markedly lower levels of within-network connectivity in the default mode network and somatomotor network relative to controls. These findings warrant further investigation using a task-based procedure that may help disentangle the relationship between brain function and cognitive performance across the spectrum of neurodevelopmental disorders.
0 Communities
1 Members
0 Resources
MeSH Terms
Effect of nonrigid registration algorithms on deformation-based morphometry: a comparative study with control and Williams syndrome subjects.
Han Z, Thornton-Wells TA, Dykens EM, Gore JC, Dawant BM
(2012) Magn Reson Imaging 30: 774-88
MeSH Terms: Adult, Algorithms, Brain, Female, Humans, Magnetic Resonance Imaging, Male, Williams Syndrome, Young Adult
Show Abstract · Added December 10, 2014
Deformation-based morphometry (DBM) is a widely used method for characterizing anatomical differences across groups. DBM is based on the analysis of the deformation fields generated by nonrigid registration algorithms, which warp the individual volumes to a DBM atlas. Although several studies have compared nonrigid registration algorithms for segmentation tasks, few studies have compared the effect of the registration algorithms on group differences that may be uncovered through DBM. In this study, we compared group atlas creation and DBM results obtained with five well-established nonrigid registration algorithms using 13 subjects with Williams syndrome and 13 normal control subjects. The five nonrigid registration algorithms include the following: (1) the adaptive bases algorithm, (2) the image registration toolkit, (3) The FSL nonlinear image registration tool, (4) the automatic registration tool, and (5) the normalization algorithm available in Statistical Parametric Mapping (SPM8). Results indicate that the choice of algorithm has little effect on the creation of group atlases. However, regions of differences between groups detected with DBM vary from algorithm to algorithm both qualitatively and quantitatively. Some regions are detected by several algorithms, but their extent varies. Others are detected only by a subset of the algorithms. Based on these results, we recommend using more than one algorithm when performing DBM studies.
Copyright © 2012 Elsevier Inc. All rights reserved.
0 Communities
3 Members
0 Resources
9 MeSH Terms
Regional brain differences in cortical thickness, surface area and subcortical volume in individuals with Williams syndrome.
Meda SA, Pryweller JR, Thornton-Wells TA
(2012) PLoS One 7: e31913
MeSH Terms: Adult, Brain Mapping, Case-Control Studies, Cerebral Cortex, Female, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Organ Size, Williams Syndrome
Show Abstract · Added December 10, 2014
Williams syndrome (WS) is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume) in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD) controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both) morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and complex patterns of cortical differences using both surface area and thickness. In addition, correlation results implicate specific brain regions in levels of anxiety in WS, consistent with previous reports investigating general anxiety disorders in the general population.
0 Communities
1 Members
0 Resources
11 MeSH Terms
White matter integrity deficits in prefrontal-amygdala pathways in Williams syndrome.
Avery SN, Thornton-Wells TA, Anderson AW, Blackford JU
(2012) Neuroimage 59: 887-94
MeSH Terms: Adult, Amygdala, Diffusion Magnetic Resonance Imaging, Female, Humans, Male, Nerve Fibers, Myelinated, Neural Pathways, Prefrontal Cortex, Reproducibility of Results, Sensitivity and Specificity, Williams Syndrome
Show Abstract · Added December 10, 2014
Williams syndrome is a neurodevelopmental disorder associated with significant non-social fears. Consistent with this elevated non-social fear, individuals with Williams syndrome have an abnormally elevated amygdala response when viewing threatening non-social stimuli. In typically-developing individuals, amygdala activity is inhibited through dense, reciprocal white matter connections with the prefrontal cortex. Neuroimaging studies suggest a functional uncoupling of normal prefrontal-amygdala inhibition in individuals with Williams syndrome, which might underlie both the extreme amygdala activity and non-social fears. This functional uncoupling might be caused by structural deficits in underlying white matter pathways; however, prefrontal-amygdala white matter deficits have yet to be explored in Williams syndrome. We used diffusion tensor imaging to investigate prefrontal-amygdala white matter integrity differences in individuals with Williams syndrome and typically-developing controls with high levels of non-social fear. White matter pathways between the amygdala and several prefrontal regions were isolated using probabilistic tractography. Within each pathway, we tested for between-group differences in three measures of white matter integrity: fractional anisotropy (FA), radial diffusivity (RD), and parallel diffusivity (λ(1)). Individuals with Williams syndrome had lower FA, compared to controls, in several of the prefrontal-amygdala pathways investigated, indicating a reduction in white matter integrity. Lower FA in Williams syndrome was explained by significantly higher RD, with no differences in λ(1), suggestive of lower fiber density or axon myelination in prefrontal-amygdala pathways. These results suggest that deficits in the structural integrity of prefrontal-amygdala white matter pathways might underlie the increased amygdala activity and extreme non-social fears observed in Williams syndrome.
Copyright © 2011 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
12 MeSH Terms
Alterations in diffusion properties of white matter in Williams syndrome.
Arlinghaus LR, Thornton-Wells TA, Dykens EM, Anderson AW
(2011) Magn Reson Imaging 29: 1165-74
MeSH Terms: Adolescent, Adult, Anisotropy, Brain, Brain Mapping, Cerebrovascular Circulation, Diffusion, Diffusion Tensor Imaging, Female, Frontal Lobe, Humans, Image Processing, Computer-Assisted, Male, Nerve Fibers, Myelinated, Occipital Lobe, Williams Syndrome
Show Abstract · Added December 10, 2014
Diffusion tensor imaging (DTI) was used to investigate the involvement of brain white matter in Williams syndrome (WS), a genetic neurodevelopmental disorder. Whole-brain DTIs were obtained from 16 young adults with WS and 16 normal controls. A voxel-based analysis was performed to compare fractional anisotropy (FA) values between the two groups. A tract-based analysis was also performed to compare FA values between the two groups along two major white matter tracts that pass through the external capsule: the uncinate and inferior fronto-occipital fasciculi. Several regions of both increased and decreased FA were found within major white matter tracts that connect functional regions that have previously been implicated in the cognitive and neurological symptoms of the syndrome. The tract-based analysis provided additional insight into the involvement of specific white matter tracts implicated in the voxel-based analysis within the external capsule. The results from this study support previously reported changes in white matter diffusion properties in WS and demonstrate the potential usefulness for tract-based analysis in future studies of the disorder.
Copyright © 2011 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Using novel control groups to dissect the amygdala's role in Williams syndrome.
Thornton-Wells TA, Avery SN, Blackford JU
(2011) Dev Cogn Neurosci 1: 295-304
MeSH Terms: Adolescent, Adult, Amygdala, Emotions, Fear, Female, Humans, Magnetic Resonance Imaging, Male, Photic Stimulation, Temperament, Williams Syndrome, Young Adult
Show Abstract · Added December 10, 2014
Williams syndrome is a neurodevelopmental disorder with an intriguing behavioral phenotype-hypersociability combined with significant non-social fears. Previous studies have demonstrated abnormalities in amygdala function in individuals with Williams syndrome compared to typically-developing controls. However, it remains unclear whether the findings are related to the atypical neurodevelopment of Williams syndrome, or are also associated with behavioral traits at the extreme end of a normal continuum. We used functional magnetic resonance imaging (fMRI) to compare amygdala blood-oxygenation-level-dependent (BOLD) responses to non-social and social images in individuals with Williams syndrome compared to either individuals with inhibited temperament (high non-social fear) or individuals with uninhibited temperament (high sociability). Individuals with Williams syndrome had larger amygdala BOLD responses when viewing the non-social fear images than the inhibited temperament control group. In contrast, when viewing both fear and neutral social images, individuals with Williams syndrome did not show smaller amygdala BOLD responses relative to the uninhibited temperament control group, but instead had amygdala responses proportionate to their sociability. These results suggest heightened amygdala response to non-social fear images is characteristic of WS, whereas, variability in amygdala response to social fear images is proportionate to, and might be explained by, levels of trait sociability.
0 Communities
2 Members
0 Resources
13 MeSH Terms
Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism.
Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D, Chu SH, Moreau MP, Gupta AR, Thomson SA, Mason CE, Bilguvar K, Celestino-Soper PB, Choi M, Crawford EL, Davis L, Wright NR, Dhodapkar RM, DiCola M, DiLullo NM, Fernandez TV, Fielding-Singh V, Fishman DO, Frahm S, Garagaloyan R, Goh GS, Kammela S, Klei L, Lowe JK, Lund SC, McGrew AD, Meyer KA, Moffat WJ, Murdoch JD, O'Roak BJ, Ober GT, Pottenger RS, Raubeson MJ, Song Y, Wang Q, Yaspan BL, Yu TW, Yurkiewicz IR, Beaudet AL, Cantor RM, Curland M, Grice DE, Günel M, Lifton RP, Mane SM, Martin DM, Shaw CA, Sheldon M, Tischfield JA, Walsh CA, Morrow EM, Ledbetter DH, Fombonne E, Lord C, Martin CL, Brooks AI, Sutcliffe JS, Cook EH, Geschwind D, Roeder K, Devlin B, State MW
(2011) Neuron 70: 863-85
MeSH Terms: Adolescent, Cadherins, Calcium-Binding Proteins, Cell Adhesion Molecules, Neuronal, Child, Child Development Disorders, Pervasive, Child, Preschool, Chromosomes, Human, Pair 16, Chromosomes, Human, Pair 7, Chromosomes, Human, X, DNA Copy Number Variations, Family Health, Female, Gene Duplication, Gene Expression Profiling, Genome-Wide Association Study, Genotype, Humans, Male, Nerve Tissue Proteins, Neural Cell Adhesion Molecules, Oligonucleotide Array Sequence Analysis, Phenotype, Proteins, Siblings, Ubiquitin Thiolesterase, Ubiquitin-Specific Peptidase 7, Williams Syndrome
Show Abstract · Added February 20, 2014
We have undertaken a genome-wide analysis of rare copy-number variation (CNV) in 1124 autism spectrum disorder (ASD) families, each comprised of a single proband, unaffected parents, and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, characterized by a highly social personality. We identify rare recurrent de novo CNVs at five additional regions, including 16p13.2 (encompassing genes USP7 and C16orf72) and Cadherin 13, and implement a rigorous approach to evaluating the statistical significance of these observations. Overall, large de novo CNVs, particularly those encompassing multiple genes, confer substantial risks (OR = 5.6; CI = 2.6-12.0, p = 2.4 × 10(-7)). We estimate there are 130-234 ASD-related CNV regions in the human genome and present compelling evidence, based on cumulative data, for association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin 1.
Copyright © 2011 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
28 MeSH Terms
Auditory attraction: activation of visual cortex by music and sound in Williams syndrome.
Thornton-Wells TA, Cannistraci CJ, Anderson AW, Kim CY, Eapen M, Gore JC, Blake R, Dykens EM
(2010) Am J Intellect Dev Disabil 115: 172-89
MeSH Terms: Acoustic Stimulation, Adolescent, Adult, Auditory Cortex, Brain Mapping, Female, Humans, Magnetic Resonance Imaging, Male, Music, Visual Cortex, Williams Syndrome, Young Adult
Show Abstract · Added March 7, 2014
Williams syndrome is a genetic neurodevelopmental disorder with a distinctive phenotype, including cognitive-linguistic features, nonsocial anxiety, and a strong attraction to music. we preformed functional MRI studies examining brain responses to musical and other types of stimuli in young adults with Williams syndrome and typically developing controls. In Study 1, the Williams syndrome group exhibited unforeseen activations of the visual cortex to musical stimuli, and it was this novel finding that became the focus of two subsequent studies. Using retinotopy, color localizers, and additional sound conditions, we identified specific visual areas in subjects with Williams syndrome that were activated by both musical and nonmusical auditory stimuli. The results, similar to synthetic-like experiences, have implications for cross-modal sensory processing in typical and atypical neurodevelopment.
0 Communities
3 Members
0 Resources
13 MeSH Terms
Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice.
Hoogenraad CC, Koekkoek B, Akhmanova A, Krugers H, Dortland B, Miedema M, van Alphen A, Kistler WM, Jaegle M, Koutsourakis M, Van Camp N, Verhoye M, van der Linden A, Kaverina I, Grosveld F, De Zeeuw CI, Galjart N
(2002) Nat Genet 32: 116-27
MeSH Terms: Animals, Brain, Dynactin Complex, Dyneins, Gene Targeting, Heterozygote, Mice, Mice, Knockout, Microtubule-Associated Proteins, Motor Activity, Mutagenesis, Site-Directed, Neoplasm Proteins, Nerve Tissue Proteins, Phenotype, Williams Syndrome
Show Abstract · Added December 10, 2013
Williams syndrome is a neurodevelopmental disorder caused by the hemizygous deletion of 1.6 Mb on human chromosome 7q11.23. This region comprises the gene CYLN2, encoding CLIP-115, a microtubule-binding protein of 115 kD. Using a gene-targeting approach, we provide evidence that mice with haploinsufficiency for Cyln2 have features reminiscent of Williams syndrome, including mild growth deficiency, brain abnormalities, hippocampal dysfunction and particular deficits in motor coordination. Absence of CLIP-115 also leads to increased levels of CLIP-170 (a closely related cytoplasmic linker protein) and dynactin at the tips of growing microtubules. This protein redistribution may affect dynein motor regulation and, together with the loss of CLIP-115-specific functions, underlie neurological alterations in Williams syndrome.
0 Communities
1 Members
0 Resources
15 MeSH Terms