Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 177

Publication Record

Connections

Bacterial Energetic Requirements for Helicobacter pylori Cag Type IV Secretion System-Dependent Alterations in Gastric Epithelial Cells.
Lin AS, Dooyema SDR, Frick-Cheng AE, Harvey ML, Suarez G, Loh JT, McDonald WH, McClain MS, Peek RM, Cover TL
(2020) Infect Immun 88:
MeSH Terms: Antigens, Bacterial, Bacterial Proteins, Biological Transport, DNA, Bacterial, Epithelial Cells, Helicobacter pylori, Humans, Interleukin-8, Lipopolysaccharides, NF-kappa B, Peptidoglycan, Toll-Like Receptor 9, Type IV Secretion Systems, Virulence Factors
Show Abstract · Added March 3, 2020
colonizes the stomach in about half of the world's population. strains containing the pathogenicity island ( PAI) are associated with a higher risk of gastric adenocarcinoma or peptic ulcer disease than PAI-negative strains. The PAI encodes a type IV secretion system (T4SS) that mediates delivery of the CagA effector protein as well as nonprotein bacterial constituents into gastric epithelial cells. -induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and interleukin-8 (IL-8) secretion are attributed to T4SS-dependent delivery of lipopolysaccharide metabolites and peptidoglycan into host cells, and Toll-like receptor 9 (TLR9) activation is attributed to delivery of bacterial DNA. In this study, we analyzed the bacterial energetic requirements associated with these cellular alterations. Mutant strains lacking Cagα, Cagβ, or CagE (putative ATPases corresponding to VirB11, VirD4, and VirB4 in prototypical T4SSs) were capable of T4SS core complex assembly but defective in CagA translocation into host cells. Thus, the three Cag ATPases are not functionally redundant. Cagα and CagE were required for -induced NF-κB activation, IL-8 secretion, and TLR9 activation, but Cagβ was dispensable for these responses. We identified putative ATP-binding motifs (Walker-A and Walker-B) in each of the ATPases and generated mutant strains in which these motifs were altered. Each of the Walker box mutant strains exhibited properties identical to those of the corresponding deletion mutant strains. These data suggest that Cag T4SS-dependent delivery of nonprotein bacterial constituents into host cells occurs through mechanisms different from those used for recruitment and delivery of CagA into host cells.
Copyright © 2020 American Society for Microbiology.
0 Communities
1 Members
0 Resources
MeSH Terms
Preventing Gastric Cancer Development by Inhibiting the Virulence of H. pylori Infection.
Wilson KT
(2019) Oncology (Williston Park) 33: 227-31
MeSH Terms: Antineoplastic Agents, Eflornithine, Helicobacter Infections, Helicobacter pylori, Humans, Stomach Neoplasms, Virulence
Added July 11, 2019
0 Communities
1 Members
0 Resources
7 MeSH Terms
Cuts Both Ways: Proteases Modulate Virulence of Enterohemorrhagic .
Palmer LD, Skaar EP
(2019) mBio 10:
MeSH Terms: Enterohemorrhagic Escherichia coli, Escherichia coli Proteins, Humans, Microbiota, Peptide Hydrolases, Virulence
Show Abstract · Added April 2, 2019
Enterohemorrhagic (EHEC) is a major cause of foodborne gastrointestinal illness. EHEC uses a specialized type III secretion system (T3SS) to form attaching and effacing lesions in the colonic epithelium and outcompete commensal gut microbiota to cause disease. A recent report in (E. A. Cameron, M. M. Curtis, A. Kumar, G. M. Dunny, et al., mBio 9:e02204-18, 2018, https://doi.org/10.1128/mBio.02204-18) describes a new role for gut commensals in potentiating disease caused by EHEC. Proteases produced by EHEC and the prevalent human commensal cleave proteins in the EHEC T3SS translocon that modulate T3SS function. protease activity promotes translocation of bacterial effectors required for lesion formation. These results describe a new role for the microbiota in gastrointestinal disease that could uncover future treatments to prevent the spread of gastroenteritis.
Copyright © 2019 Palmer and Skaar.
0 Communities
1 Members
0 Resources
MeSH Terms
Manganese Detoxification by MntE Is Critical for Resistance to Oxidative Stress and Virulence of .
Grunenwald CM, Choby JE, Juttukonda LJ, Beavers WN, Weiss A, Torres VJ, Skaar EP
(2019) mBio 10:
MeSH Terms: Animals, Cation Transport Proteins, Disease Models, Animal, Gene Expression Regulation, Bacterial, Homeostasis, Iron, Manganese, Mice, Inbred BALB C, Microbial Viability, Oxidative Stress, Staphylococcal Infections, Staphylococcus aureus, Transcription Factors, Transcription, Genetic, Virulence
Show Abstract · Added April 2, 2019
Manganese (Mn) is an essential micronutrient critical for the pathogenesis of , a significant cause of human morbidity and mortality. Paradoxically, excess Mn is toxic; therefore, maintenance of intracellular Mn homeostasis is required for survival. Here we describe a Mn exporter in , MntE, which is a member of the cation diffusion facilitator (CDF) protein family and conserved among Gram-positive pathogens. Upregulation of transcription in response to excess Mn is dependent on the presence of MntR, a transcriptional repressor of the Mn uptake system. Inactivation of or leads to reduced growth in media supplemented with Mn, demonstrating MntE is required for detoxification of excess Mn. Inactivation of results in elevated levels of intracellular Mn, but reduced intracellular iron (Fe) levels, supporting the hypothesis that MntE functions as a Mn efflux pump and Mn efflux influences Fe homeostasis. Strains inactivated for are more sensitive to the oxidants NaOCl and paraquat, indicating Mn homeostasis is critical for resisting oxidative stress. Furthermore, and are required for full virulence of during infection, suggesting experiences Mn toxicity Combined, these data support a model in which MntR controls Mn homeostasis by balancing transcriptional repression of and induction of , both of which are critical for pathogenesis. Thus, Mn efflux contributes to bacterial survival and virulence during infection, establishing MntE as a potential antimicrobial target and expanding our understanding of Mn homeostasis. Manganese (Mn) is generally viewed as a critical nutrient that is beneficial to pathogenic bacteria due to its function as an enzymatic cofactor and its capability of acting as an antioxidant; yet paradoxically, high concentrations of this transition metal can be toxic. In this work, we demonstrate utilizes the cation diffusion facilitator (CDF) family protein MntE to alleviate Mn toxicity through efflux of excess Mn. Inactivation of leads to a significant reduction in resistance to oxidative stress and mediated mortality within a mouse model of systemic infection. These results highlight the importance of MntE-mediated Mn detoxification in intracellular Mn homeostasis, resistance to oxidative stress, and virulence. Therefore, this establishes MntE as a potential target for development of anti- therapeutics.
Copyright © 2019 Grunenwald et al.
0 Communities
1 Members
0 Resources
15 MeSH Terms
α-Difluoromethylornithine reduces gastric carcinogenesis by causing mutations in .
Sierra JC, Suarez G, Piazuelo MB, Luis PB, Baker DR, Romero-Gallo J, Barry DP, Schneider C, Morgan DR, Peek RM, Gobert AP, Wilson KT
(2019) Proc Natl Acad Sci U S A 116: 5077-5085
MeSH Terms: Animals, Bacterial Proteins, Carcinogenesis, DNA Damage, Eflornithine, Gene Deletion, Gene Rearrangement, Gerbillinae, Helicobacter pylori, Male, Mutation, Oxidative Stress, RNA, Messenger, Stomach Neoplasms, Virulence
Show Abstract · Added February 26, 2019
Infection by is the primary cause of gastric adenocarcinoma. The most potent virulence factor is cytotoxin-associated gene A (CagA), which is translocated by a type 4 secretion system (T4SS) into gastric epithelial cells and activates oncogenic signaling pathways. The gene encodes for a key component of the T4SS and can undergo gene rearrangements. We have shown that the cancer chemopreventive agent α-difluoromethylornithine (DFMO), known to inhibit the enzyme ornithine decarboxylase, reduces -mediated gastric cancer incidence in Mongolian gerbils. In the present study, we questioned whether DFMO might directly affect pathogenicity. We show that output strains isolated from gerbils treated with DFMO exhibit reduced ability to translocate CagA in gastric epithelial cells. Further, we frequently detected genomic modifications in the middle repeat region of the gene of output strains from DFMO-treated animals, which were associated with alterations in the CagY protein. Gerbils did not develop carcinoma when infected with a DFMO output strain containing rearranged or the parental strain in which the wild-type was replaced by with DFMO-induced rearrangements. Lastly, we demonstrate that in vitro treatment of by DFMO induces oxidative DNA damage, expression of the DNA repair enzyme MutS2, and mutations in , demonstrating that DFMO directly affects genomic stability. Deletion of abrogated the ability of DFMO to induce rearrangements directly. In conclusion, DFMO-induced oxidative stress in leads to genomic alterations and attenuates virulence.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Assessing Acinetobacter baumannii Virulence and Persistence in a Murine Model of Lung Infection.
Palmer LD, Green ER, Sheldon JR, Skaar EP
(2019) Methods Mol Biol 1946: 289-305
MeSH Terms: Acinetobacter Infections, Acinetobacter baumannii, Acute Disease, Animals, Bacterial Load, Biopsy, Disease Models, Animal, Flow Cytometry, Immunity, Immunohistochemistry, Mice, Pneumonia, Bacterial, Virulence
Show Abstract · Added April 2, 2019
Acinetobacter baumannii is a Gram-negative opportunistic pathogen and a leading cause of ventilator-associated pneumonia. Murine models of A. baumannii lung infection allow researchers to experimentally assess A. baumannii virulence and host response. Intranasal administration of A. baumannii models acute lung infection. This chapter describes the methods to test A. baumannii virulence in a murine model of lung infection, including assessing the competitive index of a bacterial mutant and the associated inflammatory responses.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Commensal Enterobacteriaceae Protect against Salmonella Colonization through Oxygen Competition.
Litvak Y, Mon KKZ, Nguyen H, Chanthavixay G, Liou M, Velazquez EM, Kutter L, Alcantara MA, Byndloss MX, Tiffany CR, Walker GT, Faber F, Zhu Y, Bronner DN, Byndloss AJ, Tsolis RM, Zhou H, Bäumler AJ
(2019) Cell Host Microbe 25: 128-139.e5
MeSH Terms: Animals, Animals, Newborn, Cecum, Chickens, Coinfection, Enterobacteriaceae, Escherichia coli, Female, Gastrointestinal Microbiome, Male, Mice, Oxygen, Probiotics, Salmonella, Salmonella Infections, Animal, Salmonella enteritidis, Spores, Bacterial, Symbiosis, Virulence Factors
Show Abstract · Added March 30, 2020
Neonates are highly susceptible to infection with enteric pathogens, but the underlying mechanisms are not resolved. We show that neonatal chick colonization with Salmonella enterica serovar Enteritidis requires a virulence-factor-dependent increase in epithelial oxygenation, which drives pathogen expansion by aerobic respiration. Co-infection experiments with an Escherichia coli strain carrying an oxygen-sensitive reporter suggest that S. Enteritidis competes with commensal Enterobacteriaceae for oxygen. A combination of Enterobacteriaceae and spore-forming bacteria, but not colonization with either community alone, confers colonization resistance against S. Enteritidis in neonatal chicks, phenocopying germ-free mice associated with adult chicken microbiota. Combining spore-forming bacteria with a probiotic E. coli isolate protects germ-free mice from pathogen colonization, but the protection is lost when the ability to respire oxygen under micro-aerophilic conditions is genetically ablated in E. coli. These results suggest that commensal Enterobacteriaceae contribute to colonization resistance by competing with S. Enteritidis for oxygen, a resource critical for pathogen expansion.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Heme sensing and detoxification by HatRT contributes to pathogenesis during Clostridium difficile infection.
Knippel RJ, Zackular JP, Moore JL, Celis AI, Weiss A, Washington MK, DuBois JL, Caprioli RM, Skaar EP
(2018) PLoS Pathog 14: e1007486
MeSH Terms: Animals, Bacterial Proteins, Clostridium Infections, Clostridium difficile, Genes, Bacterial, Heme, Male, Mice, Mice, Inbred C57BL, Operon, Virulence
Show Abstract · Added April 7, 2019
Clostridium difficile is a Gram-positive, spore-forming anaerobic bacterium that infects the colon, causing symptoms ranging from infectious diarrhea to fulminant colitis. In the last decade, the number of C. difficile infections has dramatically risen, making it the leading cause of reported hospital acquired infection in the United States. Bacterial toxins produced during C. difficile infection (CDI) damage host epithelial cells, releasing erythrocytes and heme into the gastrointestinal lumen. The reactive nature of heme can lead to toxicity through membrane disruption, membrane protein and lipid oxidation, and DNA damage. Here we demonstrate that C. difficile detoxifies excess heme to achieve full virulence within the gastrointestinal lumen during infection, and that this detoxification occurs through the heme-responsive expression of the heme activated transporter system (HatRT). Heme-dependent transcriptional activation of hatRT was discovered through an RNA-sequencing analysis of C. difficile grown in the presence of a sub-toxic concentration of heme. HatRT is comprised of a TetR family transcriptional regulator (hatR) and a major facilitator superfamily transporter (hatT). Strains inactivated for hatR or hatT are more sensitive to heme toxicity than wild-type. HatR binds heme, which relieves the repression of the hatRT operon, whereas HatT functions as a heme efflux pump. In a murine model of CDI, a strain inactivated for hatT displayed lower pathogenicity in a toxin-independent manner. Taken together, these data suggest that HatR senses intracellular heme concentrations leading to increased expression of the hatRT operon and subsequent heme efflux by HatT during infection. These results describe a mechanism employed by C. difficile to relieve heme toxicity within the host, and set the stage for the development of therapeutic interventions to target this bacterial-specific system.
0 Communities
2 Members
0 Resources
MeSH Terms
Nonconventional Therapeutics against .
Grunenwald CM, Bennett MR, Skaar EP
(2018) Microbiol Spectr 6:
MeSH Terms: Anti-Bacterial Agents, Antibodies, Bacterial, Bacteriophages, Biofilms, Drug Discovery, Drug Resistance, Multiple, Bacterial, Humans, Phage Therapy, Photochemotherapy, Quorum Sensing, Staphylococcal Infections, Staphylococcus aureus, Virulence, Virulence Factors
Show Abstract · Added April 7, 2019
is one of the most important human pathogens that is responsible for a variety of diseases ranging from skin and soft tissue infections to endocarditis and sepsis. In recent decades, the treatment of staphylococcal infections has become increasingly difficult as the prevalence of multi-drug resistant strains continues to rise. With increasing mortality rates and medical costs associated with drug resistant strains, there is an urgent need for alternative therapeutic options. Many innovative strategies for alternative drug development are being pursued, including disruption of biofilms, inhibition of virulence factor production, bacteriophage-derived antimicrobials, anti-staphylococcal vaccines, and light-based therapies. While many compounds and methods still need further study to determine their feasibility, some are quickly approaching clinical application and may be available in the near future.
0 Communities
1 Members
0 Resources
MeSH Terms
Characterization and development of SAPP as a specific peptidic inhibitor that targets Porphyromonas gingivalis.
Ho MH, Lamont RJ, Chazin WJ, Chen H, Young DF, Kumar P, Xie H
(2018) Mol Oral Microbiol 33: 430-439
MeSH Terms: Adhesins, Bacterial, Bacterial Adhesion, Biofilms, Cell Membrane, Cysteine Endopeptidases, Dental Plaque, Fibroblasts, Gingipain Cysteine Endopeptidases, Humans, Peptides, Periodontitis, Porphyromonas gingivalis, Virulence
Show Abstract · Added March 26, 2019
Porphyromonas gingivalis is a keystone bacterium in the oral microbial communities that elicits a dysbiosis between the microbiota and the host. Therefore, inhibition of this organism in dental plaques has been one of the strategies for preventing and treating chronic periodontitis. We previously identified a Streptococcal ArcA derived Anti-P gingivalils Peptide (SAPP) that in vitro, is capable of repressing the expression of several virulence genes in the organism. This leads to a significant reduction in P gingivalis virulence potential, including its ability to colonize on the surface of Streptococcus gordonii, to invade human oral epithelial cells, and to produce gingipains. In this study, we showed that SAPP had minimal cytotoxicity to human oral keratinocytes and gingival fibroblasts. We observed that SAPP directly bound to the cell surface of P gingivalis, and that alterations in the sequence at the N-terminus of SAPP diminished its abilities to interact with P gingivalis cells and repressed the expression of virulence genes. Most strikingly, we demonstrated using an ex-vivo assay that besides its inhibitory activity against P gingivalis colonization, SAPP could also reduce the levels of several other oral Gram-negative bacteria strongly associated with periodontitis in multispecies biofilms. Our results provide a platform for the development of SAPP-targeted therapeutics against chronic periodontitis.
© 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
13 MeSH Terms