Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 84

Publication Record

Connections

Nonconventional Therapeutics against .
Grunenwald CM, Bennett MR, Skaar EP
(2018) Microbiol Spectr 6:
MeSH Terms: Anti-Bacterial Agents, Antibodies, Bacterial, Bacteriophages, Biofilms, Drug Discovery, Drug Resistance, Multiple, Bacterial, Humans, Phage Therapy, Photochemotherapy, Quorum Sensing, Staphylococcal Infections, Staphylococcus aureus, Virulence, Virulence Factors
Show Abstract · Added April 7, 2019
is one of the most important human pathogens that is responsible for a variety of diseases ranging from skin and soft tissue infections to endocarditis and sepsis. In recent decades, the treatment of staphylococcal infections has become increasingly difficult as the prevalence of multi-drug resistant strains continues to rise. With increasing mortality rates and medical costs associated with drug resistant strains, there is an urgent need for alternative therapeutic options. Many innovative strategies for alternative drug development are being pursued, including disruption of biofilms, inhibition of virulence factor production, bacteriophage-derived antimicrobials, anti-staphylococcal vaccines, and light-based therapies. While many compounds and methods still need further study to determine their feasibility, some are quickly approaching clinical application and may be available in the near future.
0 Communities
1 Members
0 Resources
MeSH Terms
Helicobacter pylori pathogen regulates p14ARF tumor suppressor and autophagy in gastric epithelial cells.
Horvat A, Noto JM, Ramatchandirin B, Zaika E, Palrasu M, Wei J, Schneider BG, El-Rifai W, Peek RM, Zaika AI
(2018) Oncogene 37: 5054-5065
MeSH Terms: Antigens, Bacterial, Autophagy, Bacterial Proteins, Cell Line, Tumor, Down-Regulation, Epithelial Cells, Gastric Mucosa, HCT116 Cells, Helicobacter Infections, Helicobacter pylori, Humans, Signal Transduction, Stomach, Stomach Neoplasms, Tumor Suppressor Protein p14ARF, Tumor Suppressor Protein p53, Ubiquitin-Protein Ligases, Up-Regulation, Virulence Factors
Show Abstract · Added September 25, 2018
Infection with Helicobacter pylori is one of the strongest risk factors for development of gastric cancer. Although these bacteria infect approximately half of the world's population, only a small fraction of infected individuals develops gastric malignancies. Interactions between host and bacterial virulence factors are complex and interrelated, making it difficult to elucidate specific processes associated with H. pylori-induced tumorigenesis. In this study, we found that H. pylori inhibits p14ARF tumor suppressor by inducing its degradation. This effect was found to be strain-specific. Downregulation of p14ARF induced by H. pylori leads to inhibition of autophagy in a p53-independent manner in infected cells. We identified TRIP12 protein as E3 ubiquitin ligase that is upregulated by H. pylori, inducing ubiquitination and subsequent degradation of p14ARF protein. Using isogenic H. pylori mutants, we found that induction of TRIP12 is mediated by bacterial virulence factor CagA. Increased expression of TRIP12 protein was found in infected gastric epithelial cells in vitro and human gastric mucosa of H. pylori-infected individuals. In conclusion, our data demonstrate a new mechanism of ARF inhibition that may affect host-bacteria interactions and facilitate tumorigenic transformation in the stomach.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Crossed Wires: Interspecies Interference Blocks Pathogen Colonization.
Lopez CA, Skaar EP
(2017) Cell Host Microbe 22: 721-723
MeSH Terms: Humans, Staphylococcal Infections, Staphylococcus aureus, Symbiosis, Virulence, Virulence Factors
Show Abstract · Added March 15, 2018
Commensal bacteria protect against invading pathogens using many strategies. In this issue of Cell Host & Microbe, Paharik et al. (2017) find that a commensal blocks Staphylococcus aureus colonization by producing a signal to shut down virulence.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
6 MeSH Terms
Clostridium difficile Toxin A Undergoes Clathrin-Independent, PACSIN2-Dependent Endocytosis.
Chandrasekaran R, Kenworthy AK, Lacy DB
(2016) PLoS Pathog 12: e1006070
MeSH Terms: Adaptor Proteins, Signal Transducing, Animals, Bacterial Toxins, Blotting, Western, Caco-2 Cells, Clathrin, Clostridium Infections, Clostridium difficile, Endocytosis, Enterotoxins, Fluorescent Antibody Technique, Gene Knockdown Techniques, HEK293 Cells, Humans, Image Processing, Computer-Assisted, Mice, Microscopy, Confocal, Protein Transport, Reverse Transcriptase Polymerase Chain Reaction, Transfection, Virulence Factors
Show Abstract · Added April 26, 2017
Clostridium difficile infection affects a significant number of hospitalized patients in the United States. Two homologous exotoxins, TcdA and TcdB, are the major virulence factors in C. difficile pathogenesis. The toxins are glucosyltransferases that inactivate Rho family-GTPases to disrupt host cellular function and cause fluid secretion, inflammation, and cell death. Toxicity depends on receptor binding and subsequent endocytosis. TcdB has been shown to enter cells by clathrin-dependent endocytosis, but the mechanism of TcdA uptake is still unclear. Here, we utilize a combination of RNAi-based knockdown, pharmacological inhibition, and cell imaging approaches to investigate the endocytic mechanism(s) that contribute to TcdA uptake and subsequent cytopathic and cytotoxic effects. We show that TcdA uptake and cellular intoxication is dynamin-dependent but does not involve clathrin- or caveolae-mediated endocytosis. Confocal microscopy using fluorescently labeled TcdA shows significant colocalization of the toxin with PACSIN2-positive structures in cells during entry. Disruption of PACSIN2 function by RNAi-based knockdown approaches inhibits TcdA uptake and toxin-induced downstream effects in cells indicating that TcdA entry is PACSIN2-dependent. We conclude that TcdA and TcdB utilize distinct endocytic mechanisms to intoxicate host cells.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Differing mechanisms of surviving phagosomal stress among group B Streptococcus strains of varying genotypes.
Korir ML, Laut C, Rogers LM, Plemmons JA, Aronoff DM, Manning SD
(2017) Virulence 8: 924-937
MeSH Terms: Adult, Anti-Bacterial Agents, Genotype, Humans, Macrophages, Phagocytosis, Phagosomes, Serogroup, Serotyping, Streptococcal Infections, Streptococcus agalactiae, Stress, Physiological, THP-1 Cells, Virulence Factors
Show Abstract · Added June 2, 2017
Group B Streptococcus (GBS), a leading cause of neonatal sepsis and meningitis, asymptomatically colonizes up to 30% of women and can persistently colonize even after antibiotic treatment. Previous studies have shown that GBS resides inside macrophages, but the mechanism by which it survives remains unknown. Here, we examined the ability of 4 GBS strains to survive inside macrophages and then focused on 2 strains belonging to sequence type (ST)-17 and ST-12, to examine persistence in the presence of antibiotics. A multiple stress medium was also developed using several stressors found in the phagosome to assess the ability of 30 GBS strains to withstand phagosomal stress. The ST-17 strain was more readily phagocytosed and survived intracellularly longer than the ST-12 strain, but the ST-12 strain was tolerant to ampicillin unlike the ST-17 strain. Exposure to sub-inhibitory concentrations of ampicillin and erythromycin increased the level of phagocytosis of the ST-17 strain, but had no effect on the ST-12 strain. In addition, blocking acidification of the phagosome decreased the survival of the ST-17 strain indicating a pH-dependent survival mechanism for the ST-17 strain. Congruent with the macrophage experiments, the ST-17 strain had a higher survival rate in the multiple stress medium than the ST-12 strain, and overall, serotype III isolates survived significantly better than other serotypes. These results indicate that diverse GBS strains may use differing mechanisms to persist and that serotype III strains are better able to survive specific stressors inside the phagosome relative to other serotypes.
0 Communities
1 Members
0 Resources
14 MeSH Terms
A Small-Molecule Inhibitor of Iron-Sulfur Cluster Assembly Uncovers a Link between Virulence Regulation and Metabolism in Staphylococcus aureus.
Choby JE, Mike LA, Mashruwala AA, Dutter BF, Dunman PM, Sulikowski GA, Boyd JM, Skaar EP
(2016) Cell Chem Biol 23: 1351-1361
MeSH Terms: Aconitate Hydratase, Anti-Bacterial Agents, Bacterial Proteins, Drug Discovery, Humans, Iron-Sulfur Proteins, Protein Kinases, Signal Transduction, Small Molecule Libraries, Staphylococcal Infections, Staphylococcus aureus, Transcription Factors, Virulence, Virulence Factors
Show Abstract · Added April 8, 2017
The rising problem of antimicrobial resistance in Staphylococcus aureus necessitates the discovery of novel therapeutic targets for small-molecule intervention. A major obstacle of drug discovery is identifying the target of molecules selected from high-throughput phenotypic assays. Here, we show that the toxicity of a small molecule termed '882 is dependent on the constitutive activity of the S. aureus virulence regulator SaeRS, uncovering a link between virulence factor production and energy generation. A series of genetic, physiological, and biochemical analyses reveal that '882 inhibits iron-sulfur (Fe-S) cluster assembly most likely through inhibition of the Suf complex, which synthesizes Fe-S clusters. In support of this, '882 supplementation results in decreased activity of the Fe-S cluster-dependent enzyme aconitase. Further information regarding the effects of '882 has deepened our understanding of virulence regulation and demonstrates the potential for small-molecule modulation of Fe-S cluster assembly in S. aureus and other pathogens.
Copyright © 2016 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Impact of sarA and Phenol-Soluble Modulins on the Pathogenesis of Osteomyelitis in Diverse Clinical Isolates of Staphylococcus aureus.
Loughran AJ, Gaddy D, Beenken KE, Meeker DG, Morello R, Zhao H, Byrum SD, Tackett AJ, Cassat JE, Smeltzer MS
(2016) Infect Immun 84: 2586-94
MeSH Terms: Animals, Bacterial Proteins, Gene Expression Regulation, Bacterial, Mice, Mice, Inbred C57BL, Mutation, Operon, Osteoblasts, Osteoclasts, Osteomyelitis, Proteomics, Staphylococcal Infections, Staphylococcus aureus, Virulence, Virulence Factors
Show Abstract · Added April 3, 2018
We used a murine model of acute, posttraumatic osteomyelitis to evaluate the virulence of two divergent Staphylococcus aureus clinical isolates (the USA300 strain LAC and the USA200 strain UAMS-1) and their isogenic sarA mutants. The results confirmed that both strains caused comparable degrees of osteolysis and reactive new bone formation in the acute phase of osteomyelitis. Conditioned medium (CM) from stationary-phase cultures of both strains was cytotoxic to cells of established cell lines (MC3TC-E1 and RAW 264.7 cells), primary murine calvarial osteoblasts, and bone marrow-derived osteoclasts. Both the cytotoxicity of CM and the reactive changes in bone were significantly reduced in the isogenic sarA mutants. These results confirm that sarA is required for the production and/or accumulation of extracellular virulence factors that limit osteoblast and osteoclast viability and that thereby promote bone destruction and reactive bone formation during the acute phase of S. aureus osteomyelitis. Proteomic analysis confirmed the reduced accumulation of multiple extracellular proteins in the LAC and UAMS-1 sarA mutants. Included among these were the alpha class of phenol-soluble modulins (PSMs), which were previously implicated as important determinants of osteoblast cytotoxicity and bone destruction and repair processes in osteomyelitis. Mutation of the corresponding operon reduced the cytotoxicity of CM from both UAMS-1 and LAC cultures for osteoblasts and osteoclasts. It also significantly reduced both reactive bone formation and cortical bone destruction by CM from LAC cultures. However, this was not true for CM from cultures of a UAMS-1 psmα mutant, thereby suggesting the involvement of additional virulence factors in such strains that remain to be identified.
Copyright © 2016, American Society for Microbiology. All Rights Reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
New Biology to New Treatment of Helicobacter pylori-Induced Gastric Cancer.
Peek RM
(2016) Dig Dis 34: 510-6
MeSH Terms: Anti-Infective Agents, Cell Transformation, Neoplastic, Helicobacter Infections, Helicobacter pylori, Humans, Risk Factors, Stomach Neoplasms, Virulence Factors
Show Abstract · Added April 6, 2017
BACKGROUND - Helicobacter pylori is a bacterial carcinogen that is supposed to have the highest known level of risk for the development of gastric cancer, a disease that claims hundreds of thousands of lives per year. Approximately 89% of the global gastric cancer burden and 5.5% of malignancies worldwide are attributed to H. pylori-induced inflammation and injury. However, only a fraction of colonized persons ever develop neoplasia, and disease risk involves well-choreographed interactions between pathogen and host, which are dependent upon strain-specific bacterial factors, host genotypic traits, and/or environmental conditions.
KEY MESSAGES - One H. pylori strain-specific virulence determinant that augments the risk for gastric cancer is the cag pathogenicity island, a secretion system that injects the bacterial oncoprotein CagA into host cells. Host polymorphisms within genes that regulate immunity and oncogenesis also heighten the risk for gastric cancer, in conjunction with H. pylori strain-specific constituents. Further, conditions such as iron deficiency and high salt intake can influence H. pylori phenotypes that lower the threshold for disease.
CONCLUSIONS - Delineation of bacterial, host, and environmental mediators that augment gastric cancer risk has profound ramifications for both physicians and biomedical researchers as such findings will not only focus prevention approaches that target H. pylori-infected human populations at increased risk for stomach cancer, but will also provide mechanistic insights into inflammatory carcinomas that develop beyond the gastric niche.
© 2016 S. Karger AG, Basel.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Association between genotypic diversity and biofilm production in group B Streptococcus.
Parker RE, Laut C, Gaddy JA, Zadoks RN, Davies HD, Manning SD
(2016) BMC Microbiol 16: 86
MeSH Terms: Animals, Bacterial Proteins, Biofilms, Cattle, Fimbriae, Bacterial, Genetic Variation, Genotype, Humans, Multilocus Sequence Typing, Phylogeny, Streptococcus agalactiae, Virulence Factors
Show Abstract · Added April 26, 2017
BACKGROUND - Group B Streptococcus (GBS) is a leading cause of sepsis and meningitis and an important factor in premature and stillbirths. Biofilm production has been suggested to be important for GBS pathogenesis alongside many other elements, including phylogenetic lineage and virulence factors, such as pili and capsule type. A complete understanding of the confluence of these components, however, is lacking. To identify associations between biofilm phenotype, pilus profile and lineage, 293 strains from asymptomatic carriers, invasive disease cases, and bovine mastitis cases, were assessed for biofilm production using an in vitro assay.
RESULTS - Multilocus sequence type (ST) profile, pilus island profile, and isolate source were associated with biofilm production. Strains from invasive disease cases and/or belonging to the ST-17 and ST-19 lineages were significantly more likely to form weak biofilms, whereas strains producing strong biofilms were recovered more frequently from individuals with asymptomatic colonization.
CONCLUSIONS - These data suggest that biofilm production is a lineage-specific trait in GBS and may promote colonization of strains representing lineages other than STs 17 and 19. The findings herein also demonstrate that biofilms must be considered in the treatment of pregnant women, particularly for women with heavy GBS colonization.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Structural Basis for Sialoglycan Binding by the Streptococcus sanguinis SrpA Adhesin.
Bensing BA, Loukachevitch LV, McCulloch KM, Yu H, Vann KR, Wawrzak Z, Anderson S, Chen X, Sullam PM, Iverson TM
(2016) J Biol Chem 291: 7230-40
MeSH Terms: Adhesins, Bacterial, Binding Sites, Blood Platelets, Endocarditis, Humans, N-Acetylneuraminic Acid, Streptococcal Infections, Streptococcus, Virulence Factors
Show Abstract · Added April 1, 2019
Streptococcus sanguinisis a leading cause of infective endocarditis, a life-threatening infection of the cardiovascular system. An important interaction in the pathogenesis of infective endocarditis is attachment of the organisms to host platelets.S. sanguinisexpresses a serine-rich repeat adhesin, SrpA, similar in sequence to platelet-binding adhesins associated with increased virulence in this disease. In this study, we determined the first crystal structure of the putative binding region of SrpA (SrpABR) both unliganded and in complex with a synthetic disaccharide ligand at 1.8 and 2.0 Å resolution, respectively. We identified a conserved Thr-Arg motif that orients the sialic acid moiety and is required for binding to platelet monolayers. Furthermore, we propose that sequence insertions in closely related family members contribute to the modulation of structural and functional properties, including the quaternary structure, the tertiary structure, and the ligand-binding site.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms