Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 221

Publication Record

Connections

Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal Antibodies Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice.
Gilchuk IM, Bangaru S, Gilchuk P, Irving RP, Kose N, Bombardi RG, Thornburg NJ, Creech CB, Edwards KM, Li S, Turner HL, Yu W, Zhu X, Wilson IA, Ward AB, Crowe JE
(2019) Cell Host Microbe 26: 715-728.e8
MeSH Terms: Animals, Antibodies, Heterophile, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Birds, Epitopes, Humans, Influenza A Virus, H7N9 Subtype, Influenza Vaccines, Influenza in Birds, Influenza, Human, Mice, Neuraminidase, Orthomyxoviridae Infections, Pre-Exposure Prophylaxis, Vaccination, Vaccines, Inactivated, Viral Proteins, Virus Release
Show Abstract · Added March 31, 2020
H7N9 avian influenza virus causes severe infections and might have the potential to trigger a major pandemic. Molecular determinants of human humoral immune response to N9 neuraminidase (NA) proteins, which exhibit unusual features compared with seasonal influenza virus NA proteins, are ill-defined. We isolated 35 human monoclonal antibodies (mAbs) from two H7N9 survivors and two vaccinees. These mAbs react to NA in a subtype-specific manner and recognize diverse antigenic sites on the surface of N9 NA, including epitopes overlapping with, or distinct from, the enzyme active site. Despite recognizing multiple antigenic sites, the mAbs use a common mechanism of action by blocking egress of nascent virions from infected cells, thereby providing an antiviral prophylactic and therapeutic protection in vivo in mice. Studies of breadth, potency, and diversity of antigenic recognition from four subjects suggest that vaccination with inactivated adjuvanted vaccine induce NA-reactive responses comparable to that of H7N9 natural infection.
Copyright © 2019 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Structural Basis of Protection against H7N9 Influenza Virus by Human Anti-N9 Neuraminidase Antibodies.
Zhu X, Turner HL, Lang S, McBride R, Bangaru S, Gilchuk IM, Yu W, Paulson JC, Crowe JE, Ward AB, Wilson IA
(2019) Cell Host Microbe 26: 729-738.e4
MeSH Terms: Animals, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Antiviral Agents, Cryoelectron Microscopy, Epitopes, Humans, Influenza A Virus, H7N9 Subtype, Influenza Vaccines, Neuraminidase, Orthomyxoviridae Infections, Viral Proteins
Show Abstract · Added March 31, 2020
Influenza virus neuraminidase (NA) is a major target for small-molecule antiviral drugs. Antibodies targeting the NA surface antigen could also inhibit virus entry and egress to provide host protection. However, our understanding of the nature and range of target epitopes is limited because of a lack of human antibody structures with influenza neuraminidase. Here, we describe crystal and cryogenic electron microscopy (cryo-EM) structures of NAs from human-infecting avian H7N9 viruses in complex with five human anti-N9 antibodies, systematically defining several antigenic sites and antibody epitope footprints. These antibodies either fully or partially block the NA active site or bind to epitopes distant from the active site while still showing neuraminidase inhibition. The inhibition of antibodies to NAs was further analyzed by glycan array and solution-based NA activity assays. Together, these structural studies provide insights into protection by anti-NA antibodies and templates for the development of NA-based influenza virus vaccines and therapeutics.
Copyright © 2019 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Rotavirus Species B Encodes a Functional Fusion-Associated Small Transmembrane Protein.
Diller JR, Parrington HM, Patton JT, Ogden KM
(2019) J Virol 93:
MeSH Terms: Amino Acid Sequence, Animals, Cell Line, Cytopathogenic Effect, Viral, Giant Cells, Host-Pathogen Interactions, Humans, Membrane Proteins, Protein Binding, Protein Interaction Domains and Motifs, Rotavirus, Rotavirus Infections, Viral Nonstructural Proteins, Viral Proteins
Show Abstract · Added March 3, 2020
Rotavirus is an important cause of diarrheal disease in young mammals. Rotavirus species A (RVA) causes most human rotavirus diarrheal disease and primarily affects infants and young children. Rotavirus species B (RVB) has been associated with sporadic outbreaks of human adult diarrheal disease. RVA and RVB are predicted to encode mostly homologous proteins but differ significantly in the proteins encoded by the NSP1 gene. In the case of RVB, the NSP1 gene encodes two putative protein products of unknown function, NSP1-1 and NSP1-2. We demonstrate that human RVB NSP1-1 mediates syncytium formation in cultured human cells. Based on sequence alignment, NSP1-1 proteins from species B, G, and I contain features consistent with fusion-associated small transmembrane (FAST) proteins, which have previously been identified in other genera of the family. Like some other FAST proteins, RVB NSP1-1 is predicted to have an N-terminal myristoyl modification. Addition of an N-terminal FLAG peptide disrupts NSP1-1-mediated fusion. NSP1-1 from a human RVB mediates fusion of human cells but not hamster cells and, thus, may serve as a species tropism determinant. NSP1-1 also can enhance RVA replication in human cells, both in single-cycle infection studies and during a multicycle time course in the presence of fetal bovine serum, which inhibits rotavirus spread. These findings suggest potential yet untested roles for NSP1-1 in RVB species tropism, immune evasion, and pathogenesis. While species A rotavirus is commonly associated with diarrheal disease in young children, species B rotavirus has caused sporadic outbreaks of adult diarrheal disease. A major genetic difference between species A and B rotaviruses is the NSP1 gene, which encodes two proteins for species B rotavirus. We demonstrate that the smaller of these proteins, NSP1-1, can mediate fusion of cultured human cells. Comparison with viral proteins of similar function provides insight into NSP1-1 domain organization and fusion mechanism. These comparisons suggest that there is a fatty acid modification at the amino terminus of the protein, and our results show that an intact amino terminus is required for NSP1-1-mediated fusion. NSP1-1 from a human virus mediates fusion of human cells, but not hamster cells, and enhances species A rotavirus replication in culture. These findings suggest potential, but currently untested, roles for NSP1-1 in RVB host species tropism, immune evasion, and pathogenesis.
Copyright © 2019 American Society for Microbiology.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Mechanism of Enhanced Immature Dengue Virus Attachment to Endosomal Membrane Induced by prM Antibody.
Wirawan M, Fibriansah G, Marzinek JK, Lim XX, Ng TS, Sim AYL, Zhang Q, Kostyuchenko VA, Shi J, Smith SA, Verma CS, Anand G, Crowe JE, Bond PJ, Lok SM
(2019) Structure 27: 253-267.e8
MeSH Terms: Animals, Antibodies, Viral, Cell Line, Cryoelectron Microscopy, Dengue Virus, Endosomes, Humans, Hydrogen-Ion Concentration, Immunoglobulin Fab Fragments, Models, Molecular, THP-1 Cells, Viral Proteins, Virus Attachment
Show Abstract · Added March 31, 2019
Dengue virus (DENV) particles are released from cells in different maturation states. Fully immature DENV (immDENV) is generally non-infectious, but can become infectious when complexed with anti-precursor membrane (prM) protein antibodies. It is unknown how anti-prM antibody-coated particles can undergo membrane fusion since the prM caps the envelope (E) protein fusion loop. Here, we determined cryoelectron microscopy (cryo-EM) maps of the immDENV:anti-prM complex at different pH values, mimicking the extracellular (pH 8.0) or endosomal (pH 5.0) environments. At pH 5.0, there are two structural classes with fewer antibodies bound than at pH 8.0. These classes may represent different maturation states. Molecular simulations, together with the measured high-affinity pr:antibody interaction (versus the weak pr:E interaction) and also the low pH cryo-EM structures, suggest how antibody:pr complex can dislodge from the E protein at low pH. This exposes the E protein fusion loop enhancing virus interaction with endosomes.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Cytomegalovirus (CMV) Epitope-Specific CD4 T Cells Are Inflated in HIV CMV Subjects.
Abana CO, Pilkinton MA, Gaudieri S, Chopra A, McDonnell WJ, Wanjalla C, Barnett L, Gangula R, Hager C, Jung DK, Engelhardt BG, Jagasia MH, Klenerman P, Phillips EJ, Koelle DM, Kalams SA, Mallal SA
(2017) J Immunol 199: 3187-3201
MeSH Terms: ADP-ribosyl Cyclase 1, CD4-Positive T-Lymphocytes, Cytomegalovirus, Cytomegalovirus Infections, Epitopes, T-Lymphocyte, Female, HIV Infections, HIV-1, HLA-DR7 Antigen, Humans, Immunologic Memory, Male, Membrane Glycoproteins, Viral Proteins
Show Abstract · Added March 30, 2020
Select CMV epitopes drive life-long CD8 T cell memory inflation, but the extent of CD4 memory inflation is poorly studied. CD4 T cells specific for human CMV (HCMV) are elevated in HIV HCMV subjects. To determine whether HCMV epitope-specific CD4 T cell memory inflation occurs during HIV infection, we used HLA-DR7 (DRB1*07:01) tetramers loaded with the glycoprotein B DYSNTHSTRYV (DYS) epitope to characterize circulating CD4 T cells in coinfected HLA-DR7 long-term nonprogressor HIV subjects with undetectable HCMV plasma viremia. DYS-specific CD4 T cells were inflated among these HIV subjects compared with those from an HIV HCMV HLA-DR7 cohort or with HLA-DR7-restricted CD4 T cells from the HIV-coinfected cohort that were specific for epitopes of HCMV phosphoprotein-65, tetanus toxoid precursor, EBV nuclear Ag 2, or HIV gag protein. Inflated DYS-specific CD4 T cells consisted of effector memory or effector memory-RA subsets with restricted TCRβ usage and nearly monoclonal CDR3 containing novel conserved amino acids. Expression of this near-monoclonal TCR in a Jurkat cell-transfection system validated fine DYS specificity. Inflated cells were polyfunctional, not senescent, and displayed high ex vivo levels of granzyme B, CXCR1, CD38, or HLA-DR but less often coexpressed CD38 and HLA-DR The inflation mechanism did not involve apoptosis suppression, increased proliferation, or HIV gag cross-reactivity. Instead, the findings suggest that intermittent or chronic expression of epitopes, such as DYS, drive inflation of activated CD4 T cells that home to endothelial cells and have the potential to mediate cytotoxicity and vascular disease.
Copyright © 2017 by The American Association of Immunologists, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity.
Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, Koblan LW, Kim YB, Badran AH, Liu DR
(2017) Sci Adv 3: eaao4774
MeSH Terms: Bacteriophage mu, Base Pairing, Cell Line, DNA Repair, DNA-Binding Proteins, Enzyme Activation, Gene Frequency, Gene Order, Humans, INDEL Mutation, Uracil-DNA Glycosidase, Viral Proteins
Show Abstract · Added March 21, 2018
We recently developed base editing, the programmable conversion of target C:G base pairs to T:A without inducing double-stranded DNA breaks (DSBs) or requiring homology-directed repair using engineered fusions of Cas9 variants and cytidine deaminases. Over the past year, the third-generation base editor (BE3) and related technologies have been successfully used by many researchers in a wide range of organisms. The product distribution of base editing-the frequency with which the target C:G is converted to mixtures of undesired by-products, along with the desired T:A product-varies in a target site-dependent manner. We characterize determinants of base editing outcomes in human cells and establish that the formation of undesired products is dependent on uracil N-glycosylase (UNG) and is more likely to occur at target sites containing only a single C within the base editing activity window. We engineered CDA1-BE3 and AID-BE3, which use cytidine deaminase homologs that increase base editing efficiency for some sequences. On the basis of these observations, we engineered fourth-generation base editors (BE4 and SaBE4) that increase the efficiency of C:G to T:A base editing by approximately 50%, while halving the frequency of undesired by-products compared to BE3. Fusing BE3, BE4, SaBE3, or SaBE4 to Gam, a bacteriophage Mu protein that binds DSBs greatly reduces indel formation during base editing, in most cases to below 1.5%, and further improves product purity. BE4, SaBE4, BE4-Gam, and SaBE4-Gam represent the state of the art in C:G-to-T:A base editing, and we recommend their use in future efforts.
0 Communities
0 Members
1 Resources
12 MeSH Terms
Human CD4 T Cell Responses to an Attenuated Tetravalent Dengue Vaccine Parallel Those Induced by Natural Infection in Magnitude, HLA Restriction, and Antigen Specificity.
Angelo MA, Grifoni A, O'Rourke PH, Sidney J, Paul S, Peters B, de Silva AD, Phillips E, Mallal S, Diehl SA, Kirkpatrick BD, Whitehead SS, Durbin AP, Sette A, Weiskopf D
(2017) J Virol 91:
MeSH Terms: Adolescent, Adult, Antibodies, Viral, Antibody Specificity, CD4-Positive T-Lymphocytes, Cells, Cultured, Dengue, Dengue Vaccines, Dengue Virus, Female, HLA Antigens, Humans, Male, Middle Aged, Vaccination, Vaccines, Attenuated, Viral Proteins, Young Adult
Show Abstract · Added March 30, 2020
Dengue virus (DENV) is responsible for growing numbers of infections worldwide and has proven to be a significant challenge for vaccine development. We previously demonstrated that CD8 T cell responses elicited by a dengue live attenuated virus (DLAV) vaccine resemble those observed after natural infection. In this study, we screened peripheral blood mononuclear cells (PBMCs) from donors vaccinated with a tetravalent DLAV vaccine (TV005) with pools of dengue virus-derived predicted major histocompatibility complex (MHC) class II binding peptides. The definition of CD4 T cell responses after live vaccination is important because CD4 T cells are known contributors to host immunity, including cytokine production, help for CD8 T and B cells, and direct cytotoxicity against infected cells. While responses to all antigens were observed, DENV-specific CD4 T cells were focused predominantly on the capsid and nonstructural NS3 and NS5 antigens. Importantly, CD4 T cell responses in vaccinees were similar in magnitude and breadth to those after natural infection, recognized the same antigen hierarchy, and had similar profiles of HLA restriction. We conclude that TV005 vaccination has the capacity to elicit CD4 cell responses closely mirroring those observed in a population associated with natural immunity. The development of effective vaccination strategies against dengue virus infection is of high global public health interest. Here we study the CD4 T cell responses elicited by a tetravalent live attenuated dengue vaccine and show that they resemble responses seen in humans naturally exposed to dengue virus. This is an important issue, since it is likely that optimal immunity induced by a vaccine requires induction of CD4 responses against the same antigens as those recognized as dominant in natural infection. Detailed knowledge of the T cell response may further contribute to the identification of robust correlates of protection against dengue virus.
Copyright © 2017 American Society for Microbiology.
0 Communities
1 Members
0 Resources
MeSH Terms
Structural Insights into Reovirus σ1 Interactions with Two Neutralizing Antibodies.
Dietrich MH, Ogden KM, Katen SP, Reiss K, Sutherland DM, Carnahan RH, Goff M, Cooper T, Dermody TS, Stehle T
(2017) J Virol 91:
MeSH Terms: Amino Acid Sequence, Animals, Antibodies, Neutralizing, Antibodies, Viral, Binding Sites, CHO Cells, Cell Line, Cricetulus, Hemagglutinin Glycoproteins, Influenza Virus, Immunoglobulin Fab Fragments, Mice, Molecular Docking Simulation, Molecular Dynamics Simulation, Neutralization Tests, Protein Binding, Protein Conformation, Protein Interaction Domains and Motifs, Reoviridae, Structure-Activity Relationship, Viral Proteins, Virus Replication
Show Abstract · Added April 26, 2017
Reovirus attachment protein σ1 engages glycan receptors and junctional adhesion molecule-A (JAM-A) and is thought to undergo a conformational change during the proteolytic disassembly of virions to infectious subvirion particles (ISVPs) that accompanies cell entry. The σ1 protein is also the primary target of neutralizing antibodies. Here, we present a structural and functional characterization of two neutralizing antibodies that target σ1 of serotype 1 (T1) and serotype 3 (T3) reoviruses. The crystal structures revealed that each antibody engages its cognate σ1 protein within the head domain via epitopes distinct from the JAM-A-binding site. Surface plasmon resonance and cell-binding assays indicated that both antibodies likely interfere with JAM-A engagement by steric hindrance. To define the interplay between the carbohydrate receptor and antibody binding, we conducted hemagglutination inhibition assays using virions and ISVPs. The glycan-binding site of T1 σ1 is located in the head domain and is partly occluded by the bound Fab in the crystal structure. The T1-specific antibody inhibited hemagglutination by virions and ISVPs, probably via direct interference with glycan engagement. In contrast to T1 σ1, the carbohydrate-binding site of T3 σ1 is located in the tail domain, distal to the antibody epitope. The T3-specific antibody inhibited hemagglutination by T3 virions but not ISVPs, indicating that the antibody- and glycan-binding sites in σ1 are in closer spatial proximity on virions than on ISVPs. Our results provide direct evidence for a structural rearrangement of σ1 during virion-to-ISVP conversion and contribute new information about the mechanisms of antibody-mediated neutralization of reovirus.
IMPORTANCE - Virus attachment proteins mediate binding to host cell receptors, serve critical functions in cell and tissue tropism, and are often targeted by the neutralizing antibody response. The structural investigation of antibody-antigen complexes can provide valuable information for understanding the molecular basis of virus neutralization. Studies with enveloped viruses, such as HIV and influenza virus, have helped to define sites of vulnerability and guide vaccination strategies. By comparison, less is known about antibody binding to nonenveloped viruses. Here, we structurally investigated two neutralizing antibodies that bind the attachment protein σ1 of reovirus. Furthermore, we characterized the neutralization efficiency, the binding affinity for σ1, and the effect of the antibodies on reovirus receptor engagement. Our analysis defines reovirus interactions with two neutralizing antibodies, allows us to propose a mechanism by which they block virus infection, and provides evidence for a conformational change in the σ1 protein during viral cell entry.
Copyright © 2017 American Society for Microbiology.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice.
Sapparapu G, Fernandez E, Kose N, Bin Cao , Fox JM, Bombardi RG, Zhao H, Nelson CA, Bryan AL, Barnes T, Davidson E, Mysorekar IU, Fremont DH, Doranz BJ, Diamond MS, Crowe JE
(2016) Nature 540: 443-447
MeSH Terms: Africa, Americas, Animals, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Antibody Specificity, Asia, B-Lymphocytes, Disease Models, Animal, Epitope Mapping, Female, Fetal Diseases, Fetus, Humans, Infectious Disease Transmission, Vertical, Male, Mice, Models, Molecular, Placenta, Pregnancy, Protein Multimerization, Survival Rate, Viral Proteins, Viral Vaccines, Virus Replication, Zika Virus, Zika Virus Infection
Show Abstract · Added April 13, 2017
Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that can cause severe disease, including congenital birth defects during pregnancy. To develop candidate therapeutic agents against ZIKV, we isolated a panel of human monoclonal antibodies from subjects that were previously infected with ZIKV. We show that a subset of antibodies recognize diverse epitopes on the envelope (E) protein and exhibit potent neutralizing activity. One of the most inhibitory antibodies, ZIKV-117, broadly neutralized infection of ZIKV strains corresponding to African and Asian-American lineages. Epitope mapping studies revealed that ZIKV-117 recognized a unique quaternary epitope on the E protein dimer-dimer interface. We evaluated the therapeutic efficacy of ZIKV-117 in pregnant and non-pregnant mice. Monoclonal antibody treatment markedly reduced tissue pathology, placental and fetal infection, and mortality in mice. Thus, neutralizing human antibodies can protect against maternal-fetal transmission, infection and disease, and reveal important determinants for structure-based rational vaccine design efforts.
0 Communities
1 Members
0 Resources
28 MeSH Terms
Structural basis for norovirus neutralization by an HBGA blocking human IgA antibody.
Shanker S, Czakó R, Sapparapu G, Alvarado G, Viskovska M, Sankaran B, Atmar RL, Crowe JE, Estes MK, Prasad BV
(2016) Proc Natl Acad Sci U S A 113: E5830-E5837
MeSH Terms: Amino Acid Sequence, Antibodies, Blocking, Antigens, Blood Group Antigens, Crystallography, X-Ray, Epitopes, Genotype, Humans, Immunoglobulin A, Immunoglobulin Fab Fragments, Models, Molecular, Neutralization Tests, Norovirus, Protein Domains, Viral Proteins
Show Abstract · Added April 13, 2017
Human noroviruses (HuNoVs) cause sporadic and epidemic gastroenteritis worldwide. They are classified into two major genogroups (GI and GII), with each genogroup further divided into multiple genotypes. Susceptibility to these viruses is influenced by genetically determined histo-blood group antigen (HBGA) expression. HBGAs function as cell attachment factors by binding to a surface-exposed region in the protruding (P) domain of the capsid protein. Sequence variations in this region that result in differential HBGA binding patterns and antigenicity are suggested to form a basis for strain diversification. Recent studies show that serum antibodies that block HBGA binding correlate with protection against illness. Although genogroup-dependent variation in HBGA binding specificity is structurally well characterized, an understanding of how antibodies block HBGA binding and how genotypic variations affect such blockade is lacking. Our crystallographic studies of the GI.1 P domain in complex with the Fab fragment of a human IgA monoclonal antibody (IgA 5I2) with HBGA blocking activity show that the antibody recognizes a conformational epitope formed by two surface-exposed loop clusters in the P domain. The antibody engulfs the HBGA binding site but does not affect its structural integrity. An unusual feature of the antigen recognition by IgA 5I2 is the predominant involvement of the CDR light chain 1 in contrast to the commonly observed CDR heavy chain 3, providing a unique perspective into antibody diversity in antigen recognition. Identification of the antigenic site in the P domain shows how genotypic variations might allow escape from antibody neutralization and exemplifies the interplay between antigenicity and HBGA specificity in HuNoV evolution.
0 Communities
1 Members
0 Resources
15 MeSH Terms