Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 12

Publication Record

Connections

Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.
Mingote S, Chuhma N, Kusnoor SV, Field B, Deutch AY, Rayport S
(2015) J Neurosci 35: 16259-71
MeSH Terms: Animals, Channelrhodopsins, DNA-Binding Proteins, Dopamine Plasma Membrane Transport Proteins, Dopaminergic Neurons, Excitatory Postsynaptic Potentials, Female, Glutamic Acid, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Nerve Net, Neural Pathways, Neurotransmitter Agents, Phosphopyruvate Hydratase, Prosencephalon, Transduction, Genetic, Tyrosine 3-Monooxygenase, Ventral Tegmental Area
Show Abstract · Added February 22, 2016
UNLABELLED - In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome.
SIGNIFICANCE STATEMENT - Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are capable of glutamate cotransmission. With conditional expression of channelrhodopsin in dopamine neurons, we systematically explored dopamine neuron connections in the forebrain and identified regionally specific dopamine neuron excitatory connections. Establishing that only a subset of forebrain regions receive excitatory connections from dopamine neurons will help to determine the function of dopamine neuron glutamate cotransmission, which likely involves transmission of precise temporal signals and enhancement of the dynamic range of dopamine neuron signals.
Copyright © 2015 the authors 0270-6474/15/3516259-13$15.00/0.
0 Communities
1 Members
0 Resources
20 MeSH Terms
PPARγ activation attenuates opioid consumption and modulates mesolimbic dopamine transmission.
de Guglielmo G, Melis M, De Luca MA, Kallupi M, Li HW, Niswender K, Giordano A, Senzacqua M, Somaini L, Cippitelli A, Gaitanaris G, Demopulos G, Damadzic R, Tapocik J, Heilig M, Ciccocioppo R
(2015) Neuropsychopharmacology 40: 927-37
MeSH Terms: Anilides, Animals, Conditioning, Operant, Dopamine, Dopaminergic Neurons, Heroin, Hypoglycemic Agents, Male, Mice, Transgenic, Morphine, Narcotics, Nucleus Accumbens, PPAR gamma, Pioglitazone, Prefrontal Cortex, Rats, Rats, Wistar, Self Administration, Synaptic Transmission, Thiazolidinediones, Time Factors, Ventral Tegmental Area, gamma-Aminobutyric Acid
Show Abstract · Added February 19, 2015
PPARγ is one of the three isoforms identified for the peroxisome proliferator-activated receptors (PPARs) and is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. PPARγ has been long studied for its role in adipogenesis and glucose metabolism, but the discovery of the localization in ventral tegmental area (VTA) neurons opens new vistas for a potential role in the regulation of reward processing and motivated behavior in drug addiction. Here, we demonstrate that activation of PPARγ by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. These effects are associated with a marked reduction of heroin-induced increase in phosphorylation of DARPP-32 protein in the nucleus accumbens (NAc) and with a marked and selective reduction of acute heroin-induced elevation of extracellular dopamine (DA) levels in the NAc shell, as measured by in vivo microdialysis. Through ex vivo electrophysiology in acute midbrain slices, we also show that stimulation of PPARγ attenuates opioid-induced excitation of VTA DA neurons via reduction of presynaptic GABA release from the rostromedial tegmental nucleus (RMTg). Consistent with this finding, site-specific microinjection of pioglitazone into the RMTg but not into the VTA reduced heroin taking. Our data illustrate that activation of PPARγ may represent a new pharmacotherapeutic option for the treatment of opioid addiction.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Excitatory drive onto dopaminergic neurons in the rostral linear nucleus is enhanced by norepinephrine in an α1 adrenergic receptor-dependent manner.
Williams MA, Li C, Kash TL, Matthews RT, Winder DG
(2014) Neuropharmacology 86: 116-24
MeSH Terms: Animals, Dopaminergic Neurons, Electric Capacitance, Electric Impedance, Excitatory Postsynaptic Potentials, Glutamic Acid, Green Fluorescent Proteins, Male, Membrane Potentials, Mice, Mice, Inbred C57BL, Mice, Transgenic, Miniature Postsynaptic Potentials, Norepinephrine, Promoter Regions, Genetic, Raphe Nuclei, Receptors, Adrenergic, alpha-1, Receptors, Adrenergic, alpha-2, Tyrosine 3-Monooxygenase, Ventral Tegmental Area
Show Abstract · Added August 21, 2014
Dopaminergic innervation of the extended amygdala regulates anxiety-like behavior and stress responsivity. A portion of this dopamine input arises from dopamine neurons located in the ventral lateral periaqueductal gray (vlPAG) and rostral (RLi) and caudal linear nuclei of the raphe (CLi). These neurons receive substantial norepinephrine input, which may prime them for involvement in stress responses. Using a mouse line that expresses eGFP under control of the tyrosine hydroxylase promoter, we explored the physiology and responsiveness to norepinephrine of these neurons. We find that RLi dopamine neurons differ from VTA dopamine neurons with respect to membrane resistance, capacitance and the hyperpolarization-activated current, Ih. Further, we found that norepinephrine increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) on RLi dopamine neurons. This effect was mediated through the α1 adrenergic receptor (AR), as the actions of norepinephrine were mimicked by the α1-AR agonist methoxamine and blocked by the α1-AR antagonist prazosin. This action of norepinephrine on sEPSCs was transient, as it did not persist in the presence of prazosin. Methoxamine also increased the frequency of miniature EPSCs, indicating that the α1-AR action on glutamatergic transmission likely has a presynaptic mechanism. There was also a modest decrease in sEPSC frequency with the application of the α2-AR agonist UK-14,304. These studies illustrate a potential mechanism through which norepinephrine could recruit the activity of this population of dopaminergic neurons.
Copyright © 2014 Elsevier Ltd. All rights reserved.
0 Communities
2 Members
0 Resources
20 MeSH Terms
Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice.
Lippert RN, Ellacott KL, Cone RD
(2014) Endocrinology 155: 1718-27
MeSH Terms: Animals, Appetitive Behavior, Behavior, Animal, Dopamine, Dopaminergic Neurons, Female, Food Preferences, Green Fluorescent Proteins, Homeostasis, Limbic System, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Mutant Strains, Mice, Transgenic, Nerve Tissue Proteins, Ovariectomy, Promoter Regions, Genetic, Receptor, Melanocortin, Type 3, Receptor, Melanocortin, Type 4, Sex Characteristics, Ventral Tegmental Area
Show Abstract · Added May 27, 2014
The melanocortin-3 receptor (MC3R) and MC4R are known to play critical roles in energy homeostasis. However, the physiological functions of the MC3R remain poorly understood. Earlier reports indicated that the ventral tegmental area (VTA) is one of the highest sites of MC3R expression, and we sought to determine the function of the receptor in this brain region. A MC3R-green-fluorescent protein transgenic mouse and a MC3R knockout mouse strain were used to characterize the neurochemical identity of the MC3R neurons in the VTA and to determine the effects of global MC3R deletion on VTA dopamine (DA) homeostasis. We demonstrate that the MC3R, but not MC4R, is expressed in up to a third of dopaminergic neurons of the VTA. Global deletion of the MC3R increases total dopamine by 42% in the VTA and decreases sucrose intake and preference in female but not male mice. Ovariectomy restores dopamine levels to normal, but aberrant decreased VTA dopamine levels are also observed in prepubertal female mice. Because arcuate Agouti-related peptide/neuropeptide Y neurons are known to innervate and regulate VTA signaling, the MC3R in dopaminergic neurons provides a specific input for communication of nutritional state within the mesolimbic dopamine system. Data provided here suggest that this input may be highly sexually dimorphic, functioning as a specific circuit regulating effects of estrogen on VTA dopamine levels and on sucrose preference. Overall, this data support a sexually dimorphic function of MC3R in regulation of the mesolimbic dopaminergic system and reward.
0 Communities
1 Members
0 Resources
23 MeSH Terms
A corticotropin releasing factor pathway for ethanol regulation of the ventral tegmental area in the bed nucleus of the stria terminalis.
Silberman Y, Matthews RT, Winder DG
(2013) J Neurosci 33: 950-60
MeSH Terms: Adrenergic beta-Agonists, Animals, Corticotropin-Releasing Hormone, Dopamine, Ethanol, Female, Isoproterenol, Male, Mice, Mice, Transgenic, Neural Pathways, Neurons, Septal Nuclei, Ventral Tegmental Area
Show Abstract · Added May 19, 2014
A growing literature suggests that catecholamines and corticotropin-releasing factor (CRF) interact in a serial manner to activate the bed nucleus of the stria terminalis (BNST) to drive stress- or cue-induced drug- and alcohol-seeking behaviors. Data suggest that these behaviors are driven in part by BNST projections to the ventral tegmental area (VTA). Together, these findings suggest the existence of a CRF-signaling pathway within the BNST that is engaged by catecholamines and regulates the activity of BNST neurons projecting to the VTA. Here we test three aspects of this model to determine: (1) whether catecholamines modify CRF neuron activity in the BNST; (2) whether CRF regulates excitatory drive onto VTA-projecting BNST neurons; and (3) whether this system is altered by ethanol exposure and withdrawal. A CRF neuron fluorescent reporter strategy was used to identify BNST CRF neurons for whole-cell patch-clamp analysis in acutely prepared slices. Using this approach, we found that both dopamine and isoproterenol significantly depolarized BNST CRF neurons. Furthermore, using a fluorescent microsphere-based identification strategy we found that CRF enhances the frequency of spontaneous EPSCs onto VTA-projecting BNST neurons in naive mice. This action of CRF was occluded during acute withdrawal from chronic intermittent ethanol exposure. These findings suggest that dopamine and isoproterenol may enhance CRF release from local BNST sources, leading to enhancement of excitatory neurotransmission on VTA-projecting neurons, and that this pathway is engaged by patterns of alcohol exposure and withdrawal known to drive excessive alcohol intake.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Prostaglandin E2-mediated attenuation of mesocortical dopaminergic pathway is critical for susceptibility to repeated social defeat stress in mice.
Tanaka K, Furuyashiki T, Kitaoka S, Senzai Y, Imoto Y, Segi-Nishida E, Deguchi Y, Breyer RM, Breyer MD, Narumiya S
(2012) J Neurosci 32: 4319-29
MeSH Terms: 3,4-Dihydroxyphenylacetic Acid, Analysis of Variance, Animals, Benzazepines, Calcium-Binding Proteins, Corticosterone, Cyclooxygenase 1, Cyclooxygenase 2, Cyclooxygenase Inhibitors, Dinoprostone, Disease Models, Animal, Disease Susceptibility, Dominance-Subordination, Dopamine, Dopamine Antagonists, Homovanillic Acid, Interpersonal Relations, Maze Learning, Membrane Proteins, Mice, Mice, Inbred C57BL, Mice, Inbred ICR, Mice, Knockout, Microfilament Proteins, Neural Pathways, Oxidopamine, Prefrontal Cortex, Pyrazoles, Receptors, Prostaglandin E, Signal Transduction, Stress, Psychological, Sulfonamides, Time Factors, Tyrosine 3-Monooxygenase, Ventral Tegmental Area
Show Abstract · Added December 21, 2013
Various kinds of stress are thought to precipitate psychiatric disorders, such as major depression. Whereas studies in rodents have suggested a critical role of medial prefrontal cortex (mPFC) in stress susceptibility, the mechanism of how stress susceptibility is determined through mPFC remains unknown. Here we show a critical role of prostaglandin E(2) (PGE(2)), a bioactive lipid derived from arachidonic acid, in repeated social defeat stress in mice. Repeated social defeat increased the PGE(2) level in the subcortical region of the brain, and mice lacking either COX-1, a prostaglandin synthase, or EP1, a PGE receptor, were impaired in induction of social avoidance by repeated social defeat. Given the reported action of EP1 that augments GABAergic inputs to midbrain dopamine neurons, we analyzed dopaminergic response upon social defeat. Analyses of c-Fos expression of VTA dopamine neurons and dopamine turnover in mPFC showed that mesocortical dopaminergic pathway is activated upon social defeat and attenuated with repetition of social defeat in wild-type mice. EP1 deficiency abolished such repeated stress-induced attenuation of mesocortical dopaminergic pathway. Blockade of dopamine D1-like receptor during social defeat restored social avoidance in EP1-deficient mice, suggesting that disinhibited dopaminergic response during social defeat blocks induction of social avoidance. Furthermore, mPFC dopaminergic lesion by local injection of 6-hydroxydopamine, which mimicked the action of EP1 during repeated stress, facilitated induction of social avoidance upon social defeat. Taken together, our data suggest that PGE(2)-EP1 signaling is critical for susceptibility to repeated social defeat stress in mice through attenuation of mesocortical dopaminergic pathway.
1 Communities
1 Members
0 Resources
35 MeSH Terms
Role for mTOR signaling and neuronal activity in morphine-induced adaptations in ventral tegmental area dopamine neurons.
Mazei-Robison MS, Koo JW, Friedman AK, Lansink CS, Robison AJ, Vinish M, Krishnan V, Kim S, Siuta MA, Galli A, Niswender KD, Appasani R, Horvath MC, Neve RL, Worley PF, Snyder SH, Hurd YL, Cheer JF, Han MH, Russo SJ, Nestler EJ
(2011) Neuron 72: 977-90
MeSH Terms: Adaptation, Physiological, Adolescent, Adult, Animals, Dopaminergic Neurons, Female, Humans, Male, Mice, Mice, Inbred C57BL, Morphine, Neurons, Rats, Rats, Sprague-Dawley, Signal Transduction, Trans-Activators, Transcription Factors, Ventral Tegmental Area, Young Adult
Show Abstract · Added February 19, 2015
While the abuse of opiate drugs continues to rise, the neuroadaptations that occur with long-term drug exposure remain poorly understood. We describe here a series of chronic morphine-induced adaptations in ventral tegmental area (VTA) dopamine neurons, which are mediated via downregulation of AKT-mTORC2 (mammalian target of rapamycin complex-2). Chronic opiates decrease the size of VTA dopamine neurons in rodents, an effect seen in humans as well, and concomitantly increase the excitability of the cells but decrease dopamine output to target regions. Chronic morphine decreases mTORC2 activity, and overexpression of Rictor, a component of mTORC2, prevents morphine-induced changes in cell morphology and activity. Further, local knockout of Rictor in VTA decreases DA soma size and reduces rewarding responses to morphine, consistent with the hypothesis that these adaptations represent a mechanism of reward tolerance. Together, these findings demonstrate a novel role for AKT-mTORC2 signaling in mediating neuroadaptations to opiate drugs of abuse.
Copyright © 2011 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Dopaminergic network differences in human impulsivity.
Buckholtz JW, Treadway MT, Cowan RL, Woodward ND, Li R, Ansari MS, Baldwin RM, Schwartzman AN, Shelby ES, Smith CE, Kessler RM, Zald DH
(2010) Science 329: 532
MeSH Terms: Adolescent, Adult, Amphetamine-Related Disorders, Autoreceptors, Benzamides, Corpus Striatum, Dextroamphetamine, Dopamine, Female, Humans, Impulsive Behavior, Ligands, Male, Positron-Emission Tomography, Pyrrolidines, Receptors, Dopamine D2, Receptors, Dopamine D3, Signal Transduction, Substantia Nigra, Tegmentum Mesencephali, Ventral Tegmental Area, Young Adult
Show Abstract · Added May 27, 2014
Dopamine (DA) has long been implicated in impulsivity, but the precise mechanisms linking human variability in DA signaling to differences in impulsive traits remain largely unknown. By using a dual-scan positron emission tomography approach in healthy human volunteers with amphetamine and the D2/D3 ligand [18F]fallypride, we found that higher levels of trait impulsivity were predicted by diminished midbrain D2/D3 autoreceptor binding and greater amphetamine-induced DA release in the striatum, which was in turn associated with stimulant craving. Path analysis confirmed that the impact of decreased midbrain D2/D3 autoreceptor availability on trait impulsivity is mediated in part through its effect on stimulated striatal DA release.
0 Communities
2 Members
0 Resources
22 MeSH Terms
Ultrastructural localization of high-affinity choline transporter in the rat anteroventral thalamus and ventral tegmental area: differences in axon morphology and transporter distribution.
Holmstrand EC, Asafu-Adjei J, Sampson AR, Blakely RD, Sesack SR
(2010) J Comp Neurol 518: 1908-24
MeSH Terms: Animals, Axons, Immunoenzyme Techniques, Immunohistochemistry, Male, Membrane Transport Proteins, Rats, Rats, Sprague-Dawley, Thalamus, Ventral Tegmental Area
Show Abstract · Added July 10, 2013
The high-affinity choline transporter (CHT) is a protein integral to the function of cholinergic neurons in the central nervous system (CNS). We examined the ultrastructural distribution of CHT in axonal arborizations of the mesopontine tegmental cholinergic neurons, a cell group in which CHT expression has yet to be characterized at the electron microscopic level. By using silver-enhanced immunogold detection, we compared the morphological characteristics of CHT-immunoreactive axon varicosities specifically within the anteroventral thalamus (AVN) and the ventral tegmental area (VTA). We found that CHT-immunoreactive axon varicosities in the AVN displayed a smaller cross-sectional area and a lower frequency of synapse formation and dense-cored vesicle content than CHT-labeled profiles in the VTA. We further examined the subcellular distribution of CHT and observed that immunoreactivity for this protein was predominantly localized to synaptic vesicles and minimally to the plasma membrane of axons in both regions. This pattern is consistent with the subcellular distribution of CHT displayed in other cholinergic systems. Axons in the AVN showed significantly higher levels of CHT immunoreactivity than those in the VTA and correspondingly displayed a higher level of membrane CHT labeling. These novel findings have important implications for elucidating regional differences in cholinergic signaling within the thalamic and brainstem targets of the mesopontine cholinergic system.
1 Communities
1 Members
0 Resources
10 MeSH Terms
Ultrastructural interactions between terminals expressing the norepinephrine transporter and dopamine neurons in the rat and monkey ventral tegmental area.
Liprando LA, Miner LH, Blakely RD, Lewis DA, Sesack SR
(2004) Synapse 52: 233-44
MeSH Terms: Animals, Cell Communication, Dopamine, Macaca fascicularis, Male, Microscopy, Immunoelectron, Neural Pathways, Norepinephrine, Norepinephrine Plasma Membrane Transport Proteins, Presynaptic Terminals, Rats, Symporters, Tyrosine 3-Monooxygenase, Ventral Tegmental Area
Show Abstract · Added July 10, 2013
The norepinephrine (NE) system is implicated in the etiology and treatment of depression and drugs blocking the NE transporter (NET) are effective antidepressants. It is possible that dopamine (DA) also plays a role in depression and the action of antidepressant drugs, although the mechanisms whereby NE and DA interact have not been fully elaborated. We examined whether NE neurons might alter DA transmission via synaptic projections to cells in the ventral tegmental area (VTA) by using electron microscopic dual labeling immunocytochemistry in the rat and monkey. NET was used as a marker for NE axons, whereas the catecholamine synthetic enzyme, tyrosine hydroxylase (TH), served as a label for DA neurons. We observed three types of spatial relationships between these profiles that were similar in type but varied in frequency between rodent and primate. The most common arrangement involved nonsynaptic appositions between NET-immunoreactive (-ir) axons and TH-ir dendrites. Such relationships may facilitate extrasynaptic actions of NE on DA cell activity. The other commonly observed arrangement involved adjacent profiles that were otherwise separated by glia. These relationships may represent regions where NE is prevented from reaching DA cells. In only a few cases were synapses observed between NET-ir axons and TH-ir dendrites. This finding suggests that NE can synaptically regulate DA neurons, although functional interactions are more likely to involve extrasynaptic mechanisms. Finally, in the VTA of both species the majority of NET-ir axons exhibited no detectable TH immunoreactivity. The latter finding agrees with observations in cortical regions and represents the first report of its type in a subcortical structure.
Copyright 2004 Wiley-Liss, Inc.
1 Communities
1 Members
0 Resources
14 MeSH Terms