, a bio/informatics shared resource is still "open for business" - Visit the CDS website

Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 56

Publication Record


Embryo implantation triggers dynamic spatiotemporal expression of the basement membrane toolkit during uterine reprogramming.
Jones-Paris CR, Paria S, Berg T, Saus J, Bhave G, Paria BC, Hudson BG
(2017) Matrix Biol 57-58: 347-365
MeSH Terms: Animals, Basement Membrane, Collagen Type IV, Embryo Implantation, Extracellular Matrix Proteins, Female, Fluorescent Antibody Technique, Gene Expression Regulation, Injections, Laminin, Mice, Peptide Fragments, Peroxidase, Pregnancy, Protein-Serine-Threonine Kinases, RNA, Messenger, Sesame Oil, Uterus
Show Abstract · Added October 30, 2016
Basement membranes (BMs) are specialized extracellular scaffolds that influence behaviors of cells in epithelial, endothelial, muscle, nervous, and fat tissues. Throughout development and in response to injury or disease, BMs are fine-tuned with specific protein compositions, ultrastructure, and localization. These features are modulated through implements of the BM toolkit that is comprised of collagen IV, laminin, perlecan, and nidogen. Two additional proteins, peroxidasin and Goodpasture antigen-binding protein (GPBP), have recently emerged as potential members of the toolkit. In the present study, we sought to determine whether peroxidasin and GPBP undergo dynamic regulation in the assembly of uterine tissue BMs in early pregnancy as a tractable model for dynamic adult BMs. We explored these proteins in the context of collagen IV and laminin that are known to extensively change for decidualization. Electron microscopic analyses revealed: 1) a smooth continuous layer of BM in between the epithelial and stromal layers of the preimplantation endometrium; and 2) interrupted, uneven, and progressively thickened BM within the pericellular space of the postimplantation decidua. Quantification of mRNA levels by qPCR showed changes in expression levels that were complemented by immunofluorescence localization of peroxidasin, GPBP, collagen IV, and laminin. Novel BM-associated and subcellular spatiotemporal localization patterns of the four components suggest both collective pericellular functions and distinct functions in the uterus during reprogramming for embryo implantation.
Copyright © 2016 Elsevier B.V. All rights reserved.
1 Communities
2 Members
3 Resources
18 MeSH Terms
High-Throughput Screening of Myometrial Calcium-Mobilization to Identify Modulators of Uterine Contractility.
Herington JL, Swale DR, Brown N, Shelton EL, Choi H, Williams CH, Hong CC, Paria BC, Denton JS, Reese J
(2015) PLoS One 10: e0143243
MeSH Terms: Animals, Calcium, Calcium Channel Blockers, Cells, Cultured, Dose-Response Relationship, Drug, Drug Discovery, Female, High-Throughput Screening Assays, Humans, Mice, Myometrium, Oxytocin, Pregnancy, Primary Cell Culture, Reproducibility of Results, Uterine Contraction, Uterus
Show Abstract · Added December 20, 2015
The uterine myometrium (UT-myo) is a therapeutic target for preterm labor, labor induction, and postpartum hemorrhage. Stimulation of intracellular Ca2+-release in UT-myo cells by oxytocin is a final pathway controlling myometrial contractions. The goal of this study was to develop a dual-addition assay for high-throughput screening of small molecular compounds, which could regulate Ca2+-mobilization in UT-myo cells, and hence, myometrial contractions. Primary murine UT-myo cells in 384-well plates were loaded with a Ca2+-sensitive fluorescent probe, and then screened for inducers of Ca2+-mobilization and inhibitors of oxytocin-induced Ca2+-mobilization. The assay exhibited robust screening statistics (Z´ = 0.73), DMSO-tolerance, and was validated for high-throughput screening against 2,727 small molecules from the Spectrum, NIH Clinical I and II collections of well-annotated compounds. The screen revealed a hit-rate of 1.80% for agonist and 1.39% for antagonist compounds. Concentration-dependent responses of hit-compounds demonstrated an EC50 less than 10μM for 21 hit-antagonist compounds, compared to only 7 hit-agonist compounds. Subsequent studies focused on hit-antagonist compounds. Based on the percent inhibition and functional annotation analyses, we selected 4 confirmed hit-antagonist compounds (benzbromarone, dipyridamole, fenoterol hydrobromide and nisoldipine) for further analysis. Using an ex vivo isometric contractility assay, each compound significantly inhibited uterine contractility, at different potencies (IC50). Overall, these results demonstrate for the first time that high-throughput small-molecules screening of myometrial Ca2+-mobilization is an ideal primary approach for discovering modulators of uterine contractility.
1 Communities
5 Members
0 Resources
17 MeSH Terms
Alkaline phosphatase protects lipopolysaccharide-induced early pregnancy defects in mice.
Lei W, Ni H, Herington J, Reese J, Paria BC
(2015) PLoS One 10: e0123243
MeSH Terms: Alkaline Phosphatase, Animals, Disease Models, Animal, Embryo Implantation, Enzyme Activation, Female, Gene Expression, In Situ Hybridization, Inflammation, Isoenzymes, Lipopolysaccharide Receptors, Lipopolysaccharides, Mice, Myeloid Differentiation Factor 88, Phosphorylation, Pregnancy, Pregnancy Complications, RNA, Messenger, Real-Time Polymerase Chain Reaction, Toll-Like Receptor 4, Uterus
Show Abstract · Added May 26, 2015
Excessive cytokine inflammatory response due to chronic or superphysiological level of microbial infection during pregnancy leads to pregnancy complications such as early pregnancy defects/loss and preterm birth. Bacterial toxin lipopolysaccharide (LPS), long recognized as a potent proinflammatory mediator, has been identified as a risk factor for pregnancy complications. Alkaline phosphatase (AP) isozymes have been shown to detoxify LPS by dephosphorylation. In this study, we examined the role of alkaline phosphatase (AP) in mitigating LPS-induced early pregnancy complications in mice. We found that 1) the uterus prior to implantation and implantation sites following embryo implantation produce LPS recognition and dephosphorylation molecules TLR4 and tissue non-specific AP (TNAP) isozyme, respectively; 2) uterine TNAP isozyme dephosphorylates LPS at its sites of production; 3) while LPS administration following embryo implantation elicits proinflammatory cytokine mRNA levels at the embryo implantation sites (EISs) and causes early pregnancy loss, dephosphorylated LPS neither triggers proinflammatory cytokine mRNA levels at the EISs nor induces pregnancy complications; 4) AP isozyme supplementation to accelerate LPS detoxification attenuates LPS-induced pregnancy complications following embryo implantation. These findings suggest that a LPS dephosphorylation strategy using AP isozyme may have a unique therapeutic potential to mitigate LPS- or Gram-negative bacteria-induced pregnancy complications in at-risk women.
0 Communities
2 Members
0 Resources
21 MeSH Terms
High mobility group box 1 (HMGB1) protein in human uterine fluid and its relevance in implantation.
Bhutada S, Basak T, Savardekar L, Katkam RR, Jadhav G, Metkari SM, Chaudhari UK, Kumari D, Kholkute SD, Sengupta S, Sachdeva G
(2014) Hum Reprod 29: 763-80
MeSH Terms: Animals, Bodily Secretions, Cell Line, Embryo Implantation, Endometrium, Enzyme-Linked Immunosorbent Assay, Female, HMGB1 Protein, Humans, Immunohistochemistry, Menstrual Cycle, Pregnancy, Pregnancy Outcome, Rats, Uterus
Show Abstract · Added November 3, 2017
STUDY QUESTION - Does a differential abundance of high mobility group box 1 (HMGB1) protein in uterine fluid (UF) have a functional significance?
SUMMARY ANSWER - In rats, an excess of HMGB1 in UF during the receptive phase is detrimental to pregnancy.
WHAT IS KNOWN ALREADY - The identification of constituents of the human uterine secretome has been a subject of renewed interest, due to the advent of high throughput proteomic technologies. Proteomic-based investigations of human UF have revealed the presence of several proteins such as mucins, host defense proteins S100, heat shock protein 27 and haptoglobin, etc. The present study reports on the presence of HMGB1, a nuclear protein, in human UF. Activated macrophages/monocytes, natural killer cells, mature dendritic cells, pituicytes and erythroleukemic cells are also known to secrete HMGB1. Existing data suggest that extracellular HMGB1 plays a role in inflammation.
STUDY DESIGN, SIZE, DURATION - The human part of this study was cross-sectional in design. UF and endometrial tissues were collected from regularly cycling women in the early secretory (i.e. pre-receptive phase, Day 2 post-ovulation, n = 7) or secretory phase (i.e. receptive phase, Day 6 post-ovulation, n = 7) of their menstrual cycles. Samples were also collected from cycling rats in the proestrous (n = 8) or metestrous (n = 8) phase of their estrous cycles. Uteri were also collected from HMGB1-treated pregnant (n = 7) and untreated pseudo-pregnant (n = 7) rats and from pregnant rats at Day 3-5 post-coitum (p.c.) (n = 18, 3 each for six-time points).
PARTICIPANTS/MATERIALS, SETTING, METHODS - In each group of human samples, four samples were used for isobaric tag for relative and absolute quantification (iTRAQ) analysis and three samples were used for immunoblotting experiments to determine the abundance of HMGB1 in pre-receptive and receptive phase UF samples. HMGB1 levels in rat UF and endometrial tissue samples were estimated by ELISA and immunohistochemical studies, respectively. The expression of inflammation-associated molecules, such as nuclear factor kappa B (NFκB), receptor for advanced glycation end products (RAGEs), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), was analyzed by immunohistochemistry in HMGB1-treated and pseudo-pregnant rats.
MAIN RESULTS AND THE ROLE OF CHANCE - HMGB1 was identified as one of the differentially abundant proteins in the list generated by 8-plex iTRAQ analysis of receptive and pre-receptive phase UF samples. In both humans and rats, secreted and cellular levels of HMGB1 showed a similar pattern, i.e. significantly (P < 0.05) lower abundance in the receptive phase compared with that in the pre-receptive phase. A significant (P < 0.05) decline was also observed in the endometrial expression of HMGB1 on the day of implantation in pregnant rats. Exogenous administration of recombinant HMGB1, on Day 3 p.c., led to pregnancy failure, whereas administration of recombinant leukemia inhibitory factor or saline had no effect on pregnant rats. Further investigations revealed morphological changes in the endometrium, an increase in the expression of luminal epithelial NFκB and significantly (P < 0.05) higher expression levels of endometrial RAGE, TNF-α and IL-6 in HMGB1-treated rats, compared with untreated pseudo-pregnant rats.
LIMITATIONS, REASONS FOR CAUTION - The mechanisms, contributing to a decline in the cellular and extracellular levels of HMGB1 during the receptive phase, remain to be ascertained.
WIDER IMPLICATIONS OF THE FINDINGS - An excess of HMGB1 in the UF may be associated with infertility in women.
0 Communities
1 Members
0 Resources
15 MeSH Terms
1,25-dihydroxyvitamin d3 reduces extracellular matrix-associated protein expression in human uterine fibroid cells.
Halder SK, Osteen KG, Al-Hendy A
(2013) Biol Reprod 89: 150
MeSH Terms: Adult, Cells, Cultured, Down-Regulation, Extracellular Matrix, Extracellular Matrix Proteins, Female, Gene Expression Regulation, Neoplastic, Humans, Leiomyoma, Middle Aged, Myocytes, Smooth Muscle, Receptors, Calcitriol, Uterine Neoplasms, Uterus, Vitamin D
Show Abstract · Added May 29, 2014
Uterine fibroids (leiomyomas) are the most common benign tumors associated with excessive deposition of extracellular matrix (ECM)-associated proteins that increase fibroid tumorigenicity. Herein, we determined the expression levels of vitamin D receptor (VDR) protein in human uterine fibroids and compared these levels to those in adjacent normal myometrium. Using Western blot analysis, we found that more than 60% of uterine fibroids analyzed (25 of 40) expressed low levels of VDR. We also found that the biologically active 1,25-dihydroxyvitamin D3 (1,25[OH]2D3), which functions via binding to its nuclear VDR, induced VDR in a concentration-dependent manner and reduced ECM-associated fibrotic and proteoglycans expression in immortalized human uterine fibroid cell line (HuLM). At 1-10 nM concentrations, 1,25(OH)2D3 significantly induced (P < 0.05) nuclear VDR, which was further stimulated by higher concentrations of 1,25(OH)2D3 in HuLM cells. 1,25(OH)2D3 at 10 nM also significantly reduced (P < 0.05) the protein expression of ECM-associated collagen type 1, fibronectin, and plasminogen activator inhibitor-1 (PAI-1) in HuLM cells. We also found that 1,25(OH)2D3 reduced mRNA and protein expressions of proteoglycans such as fibromodulin, biglycan, and versican in HuLM cells. Moreover, the aberrant expression of structural smooth muscle actin fibers was reduced by 1,25(OH)2D3 treatment in a concentration-dependent manner in HuLM cells. Taken together, our results suggest that human uterine fibroids express reduced levels of VDR compared to the adjacent normal myometrium and that treatment with 1,25(OH)2D3 can potentially reduce the aberrant expression of major ECM-associated proteins in HuLM cells. Thus, 1,25(OH)2D3 might be an effective, safe, nonsurgical treatment option for human uterine fibroids.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Alkaline phosphatases contribute to uterine receptivity, implantation, decidualization, and defense against bacterial endotoxin in hamsters.
Lei W, Nguyen H, Brown N, Ni H, Kiffer-Moreira T, Reese J, Millán JL, Paria BC
(2013) Reproduction 146: 419-32
MeSH Terms: Alkaline Phosphatase, Animals, Cricetinae, Decidua, Embryo Implantation, Endometrium, Enzyme Induction, Escherichia coli Infections, Estrous Cycle, Female, Immunity, Innate, Isoenzymes, Lipopolysaccharides, Mesocricetus, Ovariectomy, Phosphorylation, Placentation, Pregnancy, RNA, Messenger, Uterus
Show Abstract · Added April 9, 2015
Alkaline phosphatase (AP) activity has been demonstrated in the uterus of several species, but its importance in the uterus, in general and during pregnancy, is yet to be revealed. In this study, we focused on identifying AP isozyme types and their hormonal regulation, cell type, and event-specific expression and possible functions in the hamster uterus during the cycle and early pregnancy. Our RT-PCR and in situ hybridization studies demonstrated that among the known Akp2, Akp3, Akp5, and Akp6 murine AP isozyme genes, hamster uteri express only Akp2 and Akp6; both genes are co-expressed in luminal epithelial cells. Studies in cyclic and ovariectomized hamsters established that while progesterone (P₄) is the major uterine Akp2 inducer, both P₄ and estrogen are strong Akp6 regulators. Studies in preimplantation uteri showed induction of both genes and the activity of their encoded isozymes in luminal epithelial cells during uterine receptivity. However, at the beginning of implantation, Akp2 showed reduced expression in luminal epithelial cells surrounding the implanted embryo. By contrast, expression of Akp6 and its isozyme was maintained in luminal epithelial cells adjacent to, but not away from, the implanted embryo. Following implantation, stromal transformation to decidua was associated with induced expressions of only Akp2 and its isozyme. We next demonstrated that uterine APs dephosphorylate and detoxify endotoxin lipopolysaccharide at their sites of production and activity. Taken together, our findings suggest that uterine APs contribute to uterine receptivity, implantation, and decidualization in addition to their role in protection of the uterus and pregnancy against bacterial infection.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Intrauterine group A streptococcal infections are exacerbated by prostaglandin E2.
Mason KL, Rogers LM, Soares EM, Bani-Hashemi T, Erb Downward J, Agnew D, Peters-Golden M, Weinberg JB, Crofford LJ, Aronoff DM
(2013) J Immunol 191: 2457-65
MeSH Terms: Animals, Cell Line, Dinoprostone, Disease Models, Animal, Female, Flow Cytometry, Humans, Mice, Mice, Inbred C57BL, Pregnancy, Puerperal Infection, Real-Time Polymerase Chain Reaction, Streptococcal Infections, Streptococcus pyogenes, Uterus
Show Abstract · Added September 18, 2013
Streptococcus pyogenes (Group A Streptococcus; GAS) is a major cause of severe postpartum sepsis, a re-emerging cause of maternal morbidity and mortality worldwide. Immunological alterations occur during pregnancy to promote maternofetal tolerance, which may increase the risk for puerperal infection. PGE2 is an immunomodulatory lipid that regulates maternofetal tolerance, parturition, and innate immunity. The extent to which PGE2 regulates host immune responses to GAS infections in the context of endometritis is unknown. To address this, both an in vivo mouse intrauterine (i.u.) GAS infection model and an in vitro human macrophage-GAS interaction model were used. In C57BL/6 mice, i.u. GAS inoculation resulted in local and systemic inflammatory responses and triggered extensive changes in the expression of eicosanoid pathway genes. The i.u. administration of PGE2 increased the mortality of infected mice, suppressed local IL-6 and IL-17A levels, enhanced neutrophilic inflammation, reduced uterine macrophage populations, and increased bacterial dissemination. A role for endogenous PGE2 in the modulation of antistreptococcal host defense was suggested, because mice lacking the genes encoding the microsomal PGE2 synthase-1 or the EP2 receptor were protected from death, as were mice treated with the EP4 receptor antagonist, GW627368X. PGE2 also regulated GAS-macrophage interactions. In GAS-infected human THP-1 (macrophage-like) cells, PGE2 inhibited the production of MCP-1 and TNF-α while augmenting IL-10 expression. PGE2 also impaired the phagocytic ability of human placental macrophages, THP-1 cells, and mouse peritoneal macrophages in vitro. Exploring the targeted disruption of PGE2 synthesis and signaling to optimize existing antimicrobial therapies against GAS may be warranted.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Organ-specific features of natural killer cells.
Shi FD, Ljunggren HG, La Cava A, Van Kaer L
(2011) Nat Rev Immunol 11: 658-71
MeSH Terms: Animals, Autoimmunity, Brain, Cell Communication, Cytokines, Cytotoxicity, Immunologic, Disease Models, Animal, Female, Humans, Inflammation, Intestinal Mucosa, Joints, Killer Cells, Natural, Liver, Mice, Mice, Transgenic, Organ Specificity, Pancreas, Receptors, Antigen, T-Cell, Receptors, Cytokine, Signal Transduction, Uterus
Show Abstract · Added March 20, 2014
Natural killer (NK) cells can be swiftly mobilized by danger signals and are among the earliest arrivals at target organs of disease. However, the role of NK cells in mounting inflammatory responses is often complex and sometimes paradoxical. Here, we examine the divergent phenotypic and functional features of NK cells, as deduced largely from experimental mouse models of pathophysiological responses in the liver, mucosal tissues, uterus, pancreas, joints and brain. Moreover, we discuss how organ-specific factors, the local microenvironment and unique cellular interactions may influence the organ-specific properties of NK cells.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Adherens junction proteins in the hamster uterus: their contributions to the success of implantation.
Luan L, Ding T, Stinnett A, Reese J, Paria BC
(2011) Biol Reprod 85: 996-1004
MeSH Terms: Adherens Junctions, Animals, Cadherins, Cell Adhesion, Cricetinae, Embryo Implantation, Embryonic Development, Epithelium, Female, Mesocricetus, Metalloendopeptidases, Mice, Mice, Inbred Strains, Models, Animal, Pregnancy, RNA, Messenger, Signal Transduction, Uterus, alpha Catenin, beta Catenin
Show Abstract · Added April 9, 2015
The adherens junction (AJ) is important for maintaining uterine structural integrity, composition of the luminal environment, and initiation of implantation by virtue of its properties of cell-cell recognition, adhesion, and establishment of cell polarity and permeability barriers. In this study, we investigated the uterine changes of AJ components E-cadherin, beta-catenin, and alpha-catenin at their mRNA and protein levels, together with the cellular distribution of meprinbeta, phospho-beta-catenin, and active beta-catenin proteins, in hamsters that show only ovarian progesterone-dependent uterine receptivity and implantation. By in situ hybridization and immunofluorescence, we have demonstrated that uterine epithelial cells expressed three of these AJ proteins and their mRNAs prior to and during the initial phase of implantation. Immunofluorescence study showed no change in epithelial expression patterns of uterine AJ proteins from Days 1 to 5 of pregnancy. With advancement of the implantation process, AJ components were primarily expressed in cells of the secondary decidual zone (SDZ), but not in the primary decidual zone (PDZ). In contrast, we noted strong expression of beta-catenin and alpha-catenin proteins in the PDZ, but not in the SDZ, of mice. Taken together, these results suggest that AJ proteins contribute to uterine barrier functions by cell-cell adhesion to ensure protection of the embryo. In addition, cleavage of E-cadherin by meprinbeta might contribute to weakening uterine epithelial cell-cell contact for blastocyst implantation. We also report that the nuclear localization of active beta-catenin from Day 4 onward in hamsters implies that beta-catenin/Wnt-signal transduction is activated in the uterus during implantation and decidualization.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Spontaneous preterm labor is associated with an increase in the proinflammatory signal transducer TLR4 receptor on maternal blood monocytes.
Pawelczyk E, Nowicki BJ, Izban MG, Pratap S, Sashti NA, Sanderson M, Nowicki S
(2010) BMC Pregnancy Childbirth 10: 66
MeSH Terms: Adult, Biomarkers, Cross-Sectional Studies, Female, Gene Expression, Humans, Leukocyte Count, Monocytes, Obstetric Labor, Premature, Pregnancy, RNA, Messenger, Regression Analysis, Signal Transduction, Toll-Like Receptor 4, Uterus, Young Adult
Show Abstract · Added March 11, 2014
BACKGROUND - Localized inflammation and increased expression of TLR4 receptors within the uterus has been implicated in the pathogenesis of preterm labor. It remains unclear whether intrauterine inflammatory responses activate the maternal peripheral circulatory system. Therefore we determined whether increased TLR4 expression is present in the peripheral maternal white blood cells of women with spontaneous preterm labor.
METHODS - This is a cross-sectional study of 41 preterm labor cases and 41 non-preterm controls. For each case and control sample, RNA was purified from white blood cells and TLR4 mRNA pool size was evaluated by quantitative PCR. Protein expression levels were determined by flow cytometry. Statistical evaluation using multiple linear regressions was used to determine any significant differences between the cases and controls. The purpose was to determine association prevalence of TLR4 levels and preterm labor.
RESULTS - Adjusted mean TLR4 mRNA levels of 0.788 ± 0.037 (standard error) for preterm labor and 0.348 ± 0.038 for the corresponding pregnant control women were statistically significantly different (P = 0.002). Using the lower 95% confidence interval of the mean expression level in PTL subjects (0.7) as a cutoff value for elevated TLR4 mRNA levels, 25/41 (60.9%) of PTL patients expressed elevated TLR4 mRNA as compared to 0/41 (0%) in control subjects. The TLR4 receptor levels in the granulocyte fraction of white blood cells from preterm labor and pregnant controls were similar. However, TLR4+/CD14+monocytes were 2.3 times more frequent (70% vs. 30%) and TLR4 also had a 2.6-fold higher density (750 vs. 280 molecules per cell) in preterm labor women compared with pregnant controls. There was no difference in the levels of TLR4 in patients at term.
CONCLUSIONS - Patients with preterm labor exhibited elevated levels of CD14+ maternal blood monocytes each bearing enhanced expression of TLR4, indicating that the peripheral circulatory system is activated in patients with preterm labor. Elevated leukocyte TLR4 levels may be a useful biomarker associated with preterm labor.
0 Communities
1 Members
0 Resources
16 MeSH Terms