Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 359

Publication Record

Connections

Trans-ethnic association study of blood pressure determinants in over 750,000 individuals.
Giri A, Hellwege JN, Keaton JM, Park J, Qiu C, Warren HR, Torstenson ES, Kovesdy CP, Sun YV, Wilson OD, Robinson-Cohen C, Roumie CL, Chung CP, Birdwell KA, Damrauer SM, DuVall SL, Klarin D, Cho K, Wang Y, Evangelou E, Cabrera CP, Wain LV, Shrestha R, Mautz BS, Akwo EA, Sargurupremraj M, Debette S, Boehnke M, Scott LJ, Luan J, Zhao JH, Willems SM, Thériault S, Shah N, Oldmeadow C, Almgren P, Li-Gao R, Verweij N, Boutin TS, Mangino M, Ntalla I, Feofanova E, Surendran P, Cook JP, Karthikeyan S, Lahrouchi N, Liu C, Sepúlveda N, Richardson TG, Kraja A, Amouyel P, Farrall M, Poulter NR, Understanding Society Scientific Group, International Consortium for Blood Pressure, Blood Pressure-International Consortium of Exome Chip Studies, Laakso M, Zeggini E, Sever P, Scott RA, Langenberg C, Wareham NJ, Conen D, Palmer CNA, Attia J, Chasman DI, Ridker PM, Melander O, Mook-Kanamori DO, Harst PV, Cucca F, Schlessinger D, Hayward C, Spector TD, Jarvelin MR, Hennig BJ, Timpson NJ, Wei WQ, Smith JC, Xu Y, Matheny ME, Siew EE, Lindgren C, Herzig KH, Dedoussis G, Denny JC, Psaty BM, Howson JMM, Munroe PB, Newton-Cheh C, Caulfield MJ, Elliott P, Gaziano JM, Concato J, Wilson PWF, Tsao PS, Velez Edwards DR, Susztak K, Million Veteran Program, O'Donnell CJ, Hung AM, Edwards TL
(2019) Nat Genet 51: 51-62
MeSH Terms: Adolescent, Animals, Blood Pressure, Ethnic Groups, Female, Gene Expression, Genome-Wide Association Study, Humans, Kidney Tubules, Male, Mice, Middle Aged, Polymorphism, Single Nucleotide, Transcriptome, Up-Regulation
Show Abstract · Added January 3, 2019
In this trans-ethnic multi-omic study, we reinterpret the genetic architecture of blood pressure to identify genes, tissues, phenomes and medication contexts of blood pressure homeostasis. We discovered 208 novel common blood pressure SNPs and 53 rare variants in genome-wide association studies of systolic, diastolic and pulse pressure in up to 776,078 participants from the Million Veteran Program (MVP) and collaborating studies, with analysis of the blood pressure clinical phenome in MVP. Our transcriptome-wide association study detected 4,043 blood pressure associations with genetically predicted gene expression of 840 genes in 45 tissues, and mouse renal single-cell RNA sequencing identified upregulated blood pressure genes in kidney tubule cells.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Bid maintains mitochondrial cristae structure and function and protects against cardiac disease in an integrative genomics study.
Salisbury-Ruf CT, Bertram CC, Vergeade A, Lark DS, Shi Q, Heberling ML, Fortune NL, Okoye GD, Jerome WG, Wells QS, Fessel J, Moslehi J, Chen H, Roberts LJ, Boutaud O, Gamazon ER, Zinkel SS
(2018) Elife 7:
MeSH Terms: Animals, Apoptosis, BH3 Interacting Domain Death Agonist Protein, Beclin-1, Cell Respiration, Fibrosis, Gene Expression Regulation, Genome-Wide Association Study, Genomics, Heart Diseases, Heart Ventricles, Humans, Mice, Inbred C57BL, Mitochondria, Mitochondrial Proton-Translocating ATPases, Mutation, Myeloid Progenitor Cells, Myocardial Infarction, Myocytes, Cardiac, Polymorphism, Single Nucleotide, Protein Multimerization, Protein Structure, Secondary, Protein Subunits, Reactive Oxygen Species, Reproducibility of Results, Up-Regulation
Show Abstract · Added December 11, 2018
Bcl-2 family proteins reorganize mitochondrial membranes during apoptosis, to form pores and rearrange cristae. In vitro and in vivo analysis integrated with human genetics reveals a novel homeostatic mitochondrial function for Bcl-2 family protein Bid. Loss of full-length Bid results in apoptosis-independent, irregular cristae with decreased respiration. mice display stress-induced myocardial dysfunction and damage. A gene-based approach applied to a biobank, validated in two independent GWAS studies, reveals that decreased genetically determined BID expression associates with myocardial infarction (MI) susceptibility. Patients in the bottom 5% of the expression distribution exhibit >4 fold increased MI risk. Carrier status with nonsynonymous variation in Bid's membrane binding domain, Bid, associates with MI predisposition. Furthermore, Bid but not Bid associates with Mcl-1, previously implicated in cristae stability; decreased MCL-1 expression associates with MI. Our results identify a role for Bid in homeostatic mitochondrial cristae reorganization, that we link to human cardiac disease.
© 2018, Salisbury-Ruf et al.
0 Communities
3 Members
0 Resources
26 MeSH Terms
CRISPR/Cas9 engineering of a KIM-1 reporter human proximal tubule cell line.
Veach RA, Wilson MH
(2018) PLoS One 13: e0204487
MeSH Terms: Acute Kidney Injury, CRISPR-Cas Systems, Cell Line, Cisplatin, Gene Knock-In Techniques, Gene Targeting, Genes, Reporter, Genetic Engineering, Glucose, Green Fluorescent Proteins, Hepatitis A Virus Cellular Receptor 1, Homologous Recombination, Humans, Kidney Tubules, Proximal, Luciferases, Up-Regulation
Show Abstract · Added December 13, 2018
We used the CRISPR/Cas9 system to knock-in reporter transgenes at the kidney injury molecule-1 (KIM-1) locus and isolated human proximal tubule cell (HK-2) clones. PCR verified targeted knock-in of the luciferase and eGFP reporter at the KIM-1 locus. HK-2-KIM-1 reporter cells responded to various stimuli including hypoxia, cisplatin, and high glucose, indicative of upregulation of KIM-1 expression. We attempted using CRISPR/Cas9 to also engineer the KIM-1 reporter in telomerase-immortalized human RPTEC cells. However, these cells demonstrated an inability to undergo homologous recombination at the target locus. KIM-1-reporter human proximal tubular cells could be valuable tools in drug discovery for molecules inhibiting kidney injury. Additionally, our gene targeting strategy could be used in other cell lines to evaluate the biology of KIM-1 in vitro or in vivo.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Ornithine Decarboxylase in Macrophages Exacerbates Colitis and Promotes Colitis-Associated Colon Carcinogenesis by Impairing M1 Immune Responses.
Singh K, Coburn LA, Asim M, Barry DP, Allaman MM, Shi C, Washington MK, Luis PB, Schneider C, Delgado AG, Piazuelo MB, Cleveland JL, Gobert AP, Wilson KT
(2018) Cancer Res 78: 4303-4315
MeSH Terms: Animals, Azoxymethane, Carcinogenesis, Colitis, Ulcerative, Colon, Colonic Neoplasms, Cytokines, Dextran Sulfate, Inflammation, Macrophage Activation, Macrophages, Male, Mice, Ornithine Decarboxylase, Transcription, Genetic, Up-Regulation
Show Abstract · Added June 15, 2018
Ornithine decarboxylase (ODC) is the rate-limiting enzyme for polyamine biosynthesis and restricts M1 macrophage activation in gastrointestinal (GI) infections. However, the role of macrophage ODC in colonic epithelial-driven inflammation is unknown. Here, we investigate cell-specific effects of ODC in colitis and colitis-associated carcinogenesis (CAC). Human colonic macrophages expressed increased ODC levels in active ulcerative colitis and Crohn's disease, colitis-associated dysplasia, and CAC. Mice lacking in myeloid cells ( mice) that were treated with dextran sulfate sodium (DSS) exhibited improved survival, body weight, and colon length and reduced histologic injury versus control mice. In contrast, GI epithelial-specific knockout had no effect on clinical parameters. Despite reduced histologic damage, colitis tissues of mice had increased levels of multiple proinflammatory cytokines and chemokines and enhanced expression of M1, but not M2 markers. In the azoxymethane-DSS model of CAC, mice had reduced tumor number, burden, and high-grade dysplasia. Tumors from mice had increased M1, but not M2 macrophages. Increased levels of histone 3, lysine 9 acetylation, a marker of open chromatin, were manifest in tumor macrophages of mice, consistent with our findings that macrophage ODC affects histone modifications that upregulate M1 gene transcription during GI infections. These findings support the concept that macrophage ODC augments epithelial injury-associated colitis and CAC by impairing the M1 responses that stimulate epithelial repair, antimicrobial defense, and antitumoral immunity. They also suggest that macrophage ODC is an important target for colon cancer chemoprevention. Ornithine decarboxylase contributes to the pathogenesis of colitis and associated carcinogenesis by impairing M1 macrophage responses needed for antitumoral immunity; targeting ODC in macrophages may represent a new strategy for chemoprevention. .
©2018 American Association for Cancer Research.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Helicobacter pylori pathogen regulates p14ARF tumor suppressor and autophagy in gastric epithelial cells.
Horvat A, Noto JM, Ramatchandirin B, Zaika E, Palrasu M, Wei J, Schneider BG, El-Rifai W, Peek RM, Zaika AI
(2018) Oncogene 37: 5054-5065
MeSH Terms: Antigens, Bacterial, Autophagy, Bacterial Proteins, Cell Line, Tumor, Down-Regulation, Epithelial Cells, Gastric Mucosa, HCT116 Cells, Helicobacter Infections, Helicobacter pylori, Humans, Signal Transduction, Stomach, Stomach Neoplasms, Tumor Suppressor Protein p14ARF, Tumor Suppressor Protein p53, Ubiquitin-Protein Ligases, Up-Regulation, Virulence Factors
Show Abstract · Added September 25, 2018
Infection with Helicobacter pylori is one of the strongest risk factors for development of gastric cancer. Although these bacteria infect approximately half of the world's population, only a small fraction of infected individuals develops gastric malignancies. Interactions between host and bacterial virulence factors are complex and interrelated, making it difficult to elucidate specific processes associated with H. pylori-induced tumorigenesis. In this study, we found that H. pylori inhibits p14ARF tumor suppressor by inducing its degradation. This effect was found to be strain-specific. Downregulation of p14ARF induced by H. pylori leads to inhibition of autophagy in a p53-independent manner in infected cells. We identified TRIP12 protein as E3 ubiquitin ligase that is upregulated by H. pylori, inducing ubiquitination and subsequent degradation of p14ARF protein. Using isogenic H. pylori mutants, we found that induction of TRIP12 is mediated by bacterial virulence factor CagA. Increased expression of TRIP12 protein was found in infected gastric epithelial cells in vitro and human gastric mucosa of H. pylori-infected individuals. In conclusion, our data demonstrate a new mechanism of ARF inhibition that may affect host-bacteria interactions and facilitate tumorigenic transformation in the stomach.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Intrinsic apoptotic pathway activation increases response to anti-estrogens in luminal breast cancers.
Williams MM, Lee L, Werfel T, Joly MMM, Hicks DJ, Rahman B, Elion D, McKernan C, Sanchez V, Estrada MV, Massarweh S, Elledge R, Duvall C, Cook RS
(2018) Cell Death Dis 9: 21
MeSH Terms: Aniline Compounds, Animals, Apoptosis, Breast Neoplasms, Cell Line, Tumor, Down-Regulation, Estrogen Antagonists, Female, Fulvestrant, Gene Targeting, Humans, Mice, Myeloid Cell Leukemia Sequence 1 Protein, Receptors, Estrogen, Signal Transduction, Sulfonamides, Up-Regulation, bcl-X Protein
Show Abstract · Added March 14, 2018
Estrogen receptor-α positive (ERα+) breast cancer accounts for approximately 70-80% of the nearly 25,0000 new cases of breast cancer diagnosed in the US each year. Endocrine-targeted therapies (those that block ERα activity) serve as the first line of treatment in most cases. Despite the proven benefit of endocrine therapies, however, ERα+ breast tumors can develop resistance to endocrine therapy, causing disease progression or relapse, particularly in the metastatic setting. Anti-apoptotic Bcl-2 family proteins enhance breast tumor cell survival, often promoting resistance to targeted therapies, including endocrine therapies. Herein, we investigated whether blockade of anti-apoptotic Bcl-2 family proteins could sensitize luminal breast cancers to anti-estrogen treatment. We used long-term estrogen deprivation (LTED) of human ERα+ breast cancer cell lines, an established model of sustained treatment with and acquired resistance to aromatase inhibitors (AIs), in combination with Bcl-2/Bcl-xL inhibition (ABT-263), finding that ABT-263 induced only limited tumor cell killing in LTED-selected cells in culture and in vivo. Interestingly, expression and activity of the Bcl-2-related factor Mcl-1 was increased in LTED cells. Genetic Mcl-1 ablation induced apoptosis in LTED-selected cells, and potently increased their sensitivity to ABT-263. Increased expression and activity of Mcl-1 was similarly seen in clinical breast tumor specimens treated with AI + the selective estrogen receptor downregulator fulvestrant. Delivery of Mcl-1 siRNA loaded into polymeric nanoparticles (MCL1 si-NPs) decreased Mcl-1 expression in LTED-selected and fulvestrant-treated cells, increasing tumor cell death and blocking tumor cell growth. These findings suggest that Mcl-1 upregulation in response to anti-estrogen treatment enhances tumor cell survival, decreasing response to therapeutic treatments. Therefore, strategies blocking Mcl-1 expression or activity used in combination with endocrine therapies would enhance tumor cell death.
0 Communities
2 Members
0 Resources
18 MeSH Terms
High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins.
Loh JT, Beckett AC, Scholz MB, Cover TL
(2018) Infect Immun 86:
MeSH Terms: Bacterial Outer Membrane Proteins, Gene Expression Regulation, Bacterial, Helicobacter Infections, Helicobacter pylori, Humans, Operon, Sodium Chloride, Transcription, Genetic, Up-Regulation
Show Abstract · Added July 29, 2018
infection and high dietary salt intake are risk factors for the development of gastric adenocarcinoma. One possible mechanism by which a high-salt diet could influence gastric cancer risk is by modulating gene expression. In this study, we utilized transcriptome sequencing (RNA-seq) methodology to compare the transcriptional profiles of grown in media containing different concentrations of sodium chloride. We identified 118 differentially expressed genes (65 upregulated and 53 downregulated in response to high-salt conditions), including multiple members of 14 operons. Twenty-nine of the differentially expressed genes encode proteins previously shown to undergo salt-responsive changes in abundance, based on proteomic analyses. Real-time reverse transcription (RT)-PCR analyses validated differential expression of multiple genes encoding outer membrane proteins, including adhesins (SabA and HopQ) and proteins involved in iron acquisition (FecA2 and FecA3). Transcript levels of , , and are increased under high-salt conditions, whereas transcript levels of and are decreased under high-salt conditions. Transcription of , , , and is derepressed in an mutant strain, but salt-responsive transcription of these genes is not mediated by the ArsRS two-component system, and the CrdRS and FlgRS two-component systems do not have any detectable effects on transcription of these genes. In summary, these data provide a comprehensive view of transcriptional alterations that occur in response to high-salt environmental conditions.
Copyright © 2018 American Society for Microbiology.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Loss of claudin-3 expression induces IL6/gp130/Stat3 signaling to promote colon cancer malignancy by hyperactivating Wnt/β-catenin signaling.
Ahmad R, Kumar B, Chen Z, Chen X, Müller D, Lele SM, Washington MK, Batra SK, Dhawan P, Singh AB
(2017) Oncogene 36: 6592-6604
MeSH Terms: Adenocarcinoma, Animals, Carcinogenesis, Cell Transformation, Neoplastic, Claudin-3, Colon, Colonic Neoplasms, Colorectal Neoplasms, Cytokine Receptor gp130, Epigenesis, Genetic, Epithelial-Mesenchymal Transition, Gene Expression Regulation, Neoplastic, Humans, Intestinal Mucosa, Mice, Mice, Knockout, Permeability, STAT3 Transcription Factor, Up-Regulation, Wnt Signaling Pathway, beta Catenin
Show Abstract · Added March 14, 2018
The hyperactivated Wnt/β-catenin signaling acts as a switch to induce epithelial to mesenchymal transition and promote colorectal cancer. However, due to its essential role in gut homeostasis, therapeutic targeting of this pathway has proven challenging. Additionally, IL-6/Stat-3 signaling, activated by microbial translocation through the dysregulated mucosal barrier in colon adenomas, facilitates the adenoma to adenocarcinomas transition. However, inter-dependence between these signaling pathways and key mucosal barrier components in regulating colon tumorigenesis and cancer progression remains unclear. In current study, we have discovered, using a comprehensive investigative regimen, a novel and tissue-specific role of claudin-3, a tight junction integral protein, in inhibiting colon cancer progression by serving as the common rheostat of Stat-3 and Wnt-signaling activation. Loss of claudin-3 also predicted poor patient survival. These findings however contrasted an upregulated claudin-3 expression in other cancer types and implicated role of the epigenetic regulation. Claudin-3-/- mice revealed dedifferentiated and leaky colonic epithelium, and developed invasive adenocarcinoma when subjected to colon cancer. Wnt-signaling hyperactivation, albeit in GSK-3β independent manner, differentiated colon cancer in claudin-3-/- mice versus WT-mice. Claudin-3 loss also upregulated the gp130/IL6/Stat3 signaling in colonic epithelium potentially assisted by infiltrating immune components. Genetic and pharmacological studies confirmed that claudin-3 loss induces Wnt/β-catenin activation, which is further exacerbated by Stat-3-activation and help promote colon cancer. Overall, these novel findings identify claudin-3 as a therapeutic target for inhibiting overactivation of Wnt-signaling to prevent CRC malignancy.
0 Communities
1 Members
0 Resources
21 MeSH Terms
FSTL3 is increased in renal dysfunction.
Kralisch S, Hoffmann A, Klöting N, Bachmann A, Kratzsch J, Stolzenburg JU, Dietel A, Beige J, Anders M, Bast I, Blüher M, Zhang MZ, Harris RC, Stumvoll M, Fasshauer M, Ebert T
(2017) Nephrol Dial Transplant 32: 1637-1644
MeSH Terms: Aged, Aged, 80 and over, Animals, Case-Control Studies, Cells, Cultured, Cross-Sectional Studies, Female, Follistatin-Related Proteins, Gene Expression, Glomerular Filtration Rate, Humans, Insulin Resistance, Kidney, Liver, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Middle Aged, Renal Insufficiency, Chronic, Up-Regulation
Show Abstract · Added June 2, 2017
Background - Follistatin-like 3 (FSTL3) is a novel cytokine that regulates insulin sensitivity and counteracts activin/myostatin signalling. In the present study, regulation of FSTL3 in renal dysfunction was investigated in both human chronic kidney disease (CKD) and acute kidney dysfunction (AKD). Furthermore, mFSTL3 expression was analysed in insulin-sensitive tissues in a mouse model of CKD.
Methods - Circulating FSTL3 was quantified by enzyme-linked immunosorbent assay in 581 patients with CKD covering the whole spectrum of estimated glomerular filtration rate (eGFR) categories from G1 to G5. Furthermore, FSTL3 was measured in 61 patients before and within 30 h after elective unilateral nephrectomy, an established model of AKD. Moreover, mFSTL3 mRNA expression was investigated in an animal CKD model, that is, eNOS-/-db/db mice, and compared with littermate controls.
Results - Median circulating FSTL3 levels significantly and continuously increased with deteriorating renal function (eGFR category G1: 6.1; G2: 8.2; G3: 12.7; G4: 18.5; G5: 32.1 µg/L; P < 0.001). In both human CKD and AKD, renal dysfunction remained the strongest independent predictor of FSTL3 serum concentrations in multivariate analyses. FSTL3 was independently associated with an adverse cardiometabolic profile. In CKD mice, hepatic mFSTL3 mRNA expression was increased more than 6-fold as compared with controls.
Conclusions - Circulating FSTL3 is significantly and independently associated with renal function in both patients with CKD and AKD. Hepatic mFSTL3 mRNA upregulation might contribute to increased FSTL3 levels in CKD. Our results are in agreement with the hypothesis that FSTL3 is eliminated by the kidneys and might counteract adverse activin/myostatin signalling observed in renal dysfunction.
© The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
1 Communities
1 Members
0 Resources
21 MeSH Terms
Mucosal Expression of Type 2 and Type 17 Immune Response Genes Distinguishes Ulcerative Colitis From Colon-Only Crohn's Disease in Treatment-Naive Pediatric Patients.
Rosen MJ, Karns R, Vallance JE, Bezold R, Waddell A, Collins MH, Haberman Y, Minar P, Baldassano RN, Hyams JS, Baker SS, Kellermayer R, Noe JD, Griffiths AM, Rosh JR, Crandall WV, Heyman MB, Mack DR, Kappelman MD, Markowitz J, Moulton DE, Leleiko NS, Walters TD, Kugathasan S, Wilson KT, Hogan SP, Denson LA
(2017) Gastroenterology 152: 1345-1357.e7
MeSH Terms: Adolescent, Area Under Curve, Case-Control Studies, Child, Colitis, Ulcerative, Colon, Crohn Disease, Female, Gene Expression, Humans, Immunity, Mucosal, Interleukin-13, Interleukin-13 Receptor alpha2 Subunit, Interleukin-17, Interleukin-23, Interleukin-5, Interleukins, Intestinal Mucosa, Male, Predictive Value of Tests, Prognosis, Prospective Studies, RNA, Messenger, ROC Curve, Rectum, Transcriptome, Up-Regulation
Show Abstract · Added January 31, 2017
BACKGROUND & AIMS - There is controversy regarding the role of the type 2 immune response in the pathogenesis of ulcerative colitis (UC)-few data are available from treatment-naive patients. We investigated whether genes associated with a type 2 immune response in the intestinal mucosa are up-regulated in treatment-naive pediatric patients with UC compared with patients with Crohn's disease (CD)-associated colitis or without inflammatory bowel disease (IBD), and whether expression levels are associated with clinical outcomes.
METHODS - We used a real-time reverse-transcription quantitative polymerase chain reaction array to analyze messenger RNA (mRNA) expression patterns in rectal mucosal samples from 138 treatment-naive pediatric patients with IBD and macroscopic rectal disease, as well as those from 49 children without IBD (controls), enrolled in a multicenter prospective observational study from 2008 to 2012. Results were validated in real-time reverse-transcription quantitative polymerase chain reaction analyses of rectal RNA from an independent cohort of 34 pediatric patients with IBD and macroscopic rectal disease and 17 controls from Cincinnati Children's Hospital Medical Center.
RESULTS - We measured significant increases in mRNAs associated with a type 2 immune response (interleukin [IL]5 gene, IL13, and IL13RA2) and a type 17 immune response (IL17A and IL23) in mucosal samples from patients with UC compared with patients with colon-only CD. In a regression model, increased expression of IL5 and IL17A mRNAs distinguished patients with UC from patients with colon-only CD (P = .001; area under the receiver operating characteristic curve, 0.72). We identified a gene expression pattern in rectal tissues of patients with UC, characterized by detection of IL13 mRNA, that predicted clinical response to therapy after 6 months (odds ratio [OR], 6.469; 95% confidence interval [CI], 1.553-26.94), clinical response after 12 months (OR, 6.125; 95% CI, 1.330-28.22), and remission after 12 months (OR, 5.333; 95% CI, 1.132-25.12).
CONCLUSIONS - In an analysis of rectal tissues from treatment-naive pediatric patients with IBD, we observed activation of a type 2 immune response during the early course of UC. We were able to distinguish patients with UC from those with colon-only CD based on increased mucosal expression of genes that mediate type 2 and type 17 immune responses. Increased expression at diagnosis of genes that mediate a type 2 immune response is associated with response to therapy and remission in pediatric patients with UC.
Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
27 MeSH Terms