Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 119

Publication Record

Connections

Control of antiviral innate immune response by protein geranylgeranylation.
Yang S, Harding AT, Sweeney C, Miao D, Swan G, Zhou C, Jiang Z, Fitzgerald KA, Hammer G, Bergo MO, Kroh HK, Lacy DB, Sun C, Glogauer M, Que LG, Heaton NS, Wang D
(2019) Sci Adv 5: eaav7999
MeSH Terms: Adaptor Proteins, Signal Transducing, Alkyl and Aryl Transferases, Animals, Endoplasmic Reticulum, Female, Humans, Immunity, Innate, Macrophages, Alveolar, Male, Mice, Knockout, Neuropeptides, Orthomyxoviridae Infections, Protein Prenylation, Receptor-Interacting Protein Serine-Threonine Kinases, Tripartite Motif Proteins, Ubiquitin-Protein Ligases, rac GTP-Binding Proteins, rac1 GTP-Binding Protein
Show Abstract · Added March 24, 2020
The mitochondrial antiviral signaling protein (MAVS) orchestrates host antiviral innate immune response to RNA virus infection. However, how MAVS signaling is controlled to eradicate virus while preventing self-destructive inflammation remains obscure. Here, we show that protein geranylgeranylation, a posttranslational lipid modification of proteins, limits MAVS-mediated immune signaling by targeting Rho family small guanosine triphosphatase Rac1 into the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) at the mitochondria-ER junction. Protein geranylgeranylation and subsequent palmitoylation promote Rac1 translocation into MAMs upon viral infection. MAM-localized Rac1 limits MAVS' interaction with E3 ligase Trim31 and hence inhibits MAVS ubiquitination, aggregation, and activation. Rac1 also facilitates the recruitment of caspase-8 and cFLIP to the MAVS signalosome and the subsequent cleavage of Ripk1 that terminates MAVS signaling. Consistently, mice with myeloid deficiency of protein geranylgeranylation showed improved survival upon influenza A virus infection. Our work revealed a critical role of protein geranylgeranylation in regulating antiviral innate immune response.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Disrupted structure and aberrant function of CHIP mediates the loss of motor and cognitive function in preclinical models of SCAR16.
Shi CH, Rubel C, Soss SE, Sanchez-Hodge R, Zhang S, Madrigal SC, Ravi S, McDonough H, Page RC, Chazin WJ, Patterson C, Mao CY, Willis MS, Luo HY, Li YS, Stevens DA, Tang MB, Du P, Wang YH, Hu ZW, Xu YM, Schisler JC
(2018) PLoS Genet 14: e1007664
MeSH Terms: Animals, Behavior, Animal, CRISPR-Cas Systems, Cognition, Disease Models, Animal, Female, Humans, Male, Mice, Mice, Inbred C57BL, Models, Molecular, Motor Activity, Mutagenesis, Site-Directed, Phenotype, Point Mutation, Protein Domains, Protein Multimerization, Rats, Rats, Sprague-Dawley, Spinocerebellar Ataxias, Ubiquitin-Protein Ligases
Show Abstract · Added March 26, 2019
CHIP (carboxyl terminus of heat shock 70-interacting protein) has long been recognized as an active member of the cellular protein quality control system given the ability of CHIP to function as both a co-chaperone and ubiquitin ligase. We discovered a genetic disease, now known as spinocerebellar autosomal recessive 16 (SCAR16), resulting from a coding mutation that caused a loss of CHIP ubiquitin ligase function. The initial mutation describing SCAR16 was a missense mutation in the ubiquitin ligase domain of CHIP (p.T246M). Using multiple biophysical and cellular approaches, we demonstrated that T246M mutation results in structural disorganization and misfolding of the CHIP U-box domain, promoting oligomerization, and increased proteasome-dependent turnover. CHIP-T246M has no ligase activity, but maintains interactions with chaperones and chaperone-related functions. To establish preclinical models of SCAR16, we engineered T246M at the endogenous locus in both mice and rats. Animals homozygous for T246M had both cognitive and motor cerebellar dysfunction distinct from those observed in the CHIP null animal model, as well as deficits in learning and memory, reflective of the cognitive deficits reported in SCAR16 patients. We conclude that the T246M mutation is not equivalent to the total loss of CHIP, supporting the concept that disease-causing CHIP mutations have different biophysical and functional repercussions on CHIP function that may directly correlate to the spectrum of clinical phenotypes observed in SCAR16 patients. Our findings both further expand our basic understanding of CHIP biology and provide meaningful mechanistic insight underlying the molecular drivers of SCAR16 disease pathology, which may be used to inform the development of novel therapeutics for this devastating disease.
0 Communities
1 Members
0 Resources
MeSH Terms
Helicobacter pylori pathogen regulates p14ARF tumor suppressor and autophagy in gastric epithelial cells.
Horvat A, Noto JM, Ramatchandirin B, Zaika E, Palrasu M, Wei J, Schneider BG, El-Rifai W, Peek RM, Zaika AI
(2018) Oncogene 37: 5054-5065
MeSH Terms: Antigens, Bacterial, Autophagy, Bacterial Proteins, Cell Line, Tumor, Down-Regulation, Epithelial Cells, Gastric Mucosa, HCT116 Cells, Helicobacter Infections, Helicobacter pylori, Humans, Signal Transduction, Stomach, Stomach Neoplasms, Tumor Suppressor Protein p14ARF, Tumor Suppressor Protein p53, Ubiquitin-Protein Ligases, Up-Regulation, Virulence Factors
Show Abstract · Added September 25, 2018
Infection with Helicobacter pylori is one of the strongest risk factors for development of gastric cancer. Although these bacteria infect approximately half of the world's population, only a small fraction of infected individuals develops gastric malignancies. Interactions between host and bacterial virulence factors are complex and interrelated, making it difficult to elucidate specific processes associated with H. pylori-induced tumorigenesis. In this study, we found that H. pylori inhibits p14ARF tumor suppressor by inducing its degradation. This effect was found to be strain-specific. Downregulation of p14ARF induced by H. pylori leads to inhibition of autophagy in a p53-independent manner in infected cells. We identified TRIP12 protein as E3 ubiquitin ligase that is upregulated by H. pylori, inducing ubiquitination and subsequent degradation of p14ARF protein. Using isogenic H. pylori mutants, we found that induction of TRIP12 is mediated by bacterial virulence factor CagA. Increased expression of TRIP12 protein was found in infected gastric epithelial cells in vitro and human gastric mucosa of H. pylori-infected individuals. In conclusion, our data demonstrate a new mechanism of ARF inhibition that may affect host-bacteria interactions and facilitate tumorigenic transformation in the stomach.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Identifying the substrate proteins of U-box E3s E4B and CHIP by orthogonal ubiquitin transfer.
Bhuripanyo K, Wang Y, Liu X, Zhou L, Liu R, Duong D, Zhao B, Bi Y, Zhou H, Chen G, Seyfried NT, Chazin WJ, Kiyokawa H, Yin J
(2018) Sci Adv 4: e1701393
MeSH Terms: Amino Acid Sequence, Bacteriophages, Biocatalysis, Cyclin-Dependent Kinase 4, Endoplasmic Reticulum Stress, HEK293 Cells, Humans, Mutant Proteins, Mutation, Peptides, Proteolysis, Reproducibility of Results, Signal Transduction, Substrate Specificity, Tumor Suppressor Protein p53, Tumor Suppressor Proteins, Ubiquitin, Ubiquitin-Protein Ligase Complexes, Ubiquitin-Protein Ligases, Ubiquitination
Show Abstract · Added March 24, 2018
E3 ubiquitin (UB) ligases E4B and carboxyl terminus of Hsc70-interacting protein (CHIP) use a common U-box motif to transfer UB from E1 and E2 enzymes to their substrate proteins and regulate diverse cellular processes. To profile their ubiquitination targets in the cell, we used phage display to engineer E2-E4B and E2-CHIP pairs that were free of cross-reactivity with the native UB transfer cascades. We then used the engineered E2-E3 pairs to construct "orthogonal UB transfer (OUT)" cascades so that a mutant UB (xUB) could be exclusively used by the engineered E4B or CHIP to label their substrate proteins. Purification of xUB-conjugated proteins followed by proteomics analysis enabled the identification of hundreds of potential substrates of E4B and CHIP in human embryonic kidney 293 cells. Kinase MAPK3 (mitogen-activated protein kinase 3), methyltransferase PRMT1 (protein arginine -methyltransferase 1), and phosphatase PPP3CA (protein phosphatase 3 catalytic subunit alpha) were identified as the shared substrates of the two E3s. Phosphatase PGAM5 (phosphoglycerate mutase 5) and deubiquitinase OTUB1 (ovarian tumor domain containing ubiquitin aldehyde binding protein 1) were confirmed as E4B substrates, and β-catenin and CDK4 (cyclin-dependent kinase 4) were confirmed as CHIP substrates. On the basis of the CHIP-CDK4 circuit identified by OUT, we revealed that CHIP signals CDK4 degradation in response to endoplasmic reticulum stress.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Systemic inflammation is associated with exaggerated skeletal muscle protein catabolism in maintenance hemodialysis patients.
Deger SM, Hung AM, Gamboa JL, Siew ED, Ellis CD, Booker C, Sha F, Li H, Bian A, Stewart TG, Zent R, Mitch WE, Abumrad NN, Ikizler TA
(2017) JCI Insight 2:
MeSH Terms: Adult, Animals, Biomarkers, C-Reactive Protein, Cytokines, Disease Models, Animal, Female, Homeostasis, Humans, Inflammation, Integrin beta1, Kinetics, Male, Mice, Mice, Knockout, Middle Aged, Multivariate Analysis, Muscle Proteins, Muscle, Skeletal, Regression Analysis, Renal Dialysis, Renal Insufficiency, Chronic, SKP Cullin F-Box Protein Ligases, Tripartite Motif Proteins, Ubiquitin-Protein Ligases
Show Abstract · Added March 14, 2018
BACKGROUND - Systemic inflammation and muscle wasting are highly prevalent and coexist in patients on maintenance hemodialysis (MHD). We aimed to determine the effects of systemic inflammation on skeletal muscle protein metabolism in MHD patients.
METHODS - Whole body and skeletal muscle protein turnover were assessed by stable isotope kinetic studies. We incorporated expressions of E1, E214K, E3αI, E3αII, MuRF-1, and atrogin-1 in skeletal muscle tissue from integrin β1 gene KO CKD mice models.
RESULTS - Among 129 patients with mean (± SD) age 47 ± 12 years, 74% were African American, 73% were male, and 22% had diabetes mellitus. Median high-sensitivity C-reactive protein (hs-CRP) concentration was 13 (interquartile range 0.8, 33) mg/l. There were statistically significant associations between hs-CRP and forearm skeletal muscle protein synthesis, degradation, and net forearm skeletal muscle protein balance (P < 0.001 for all). The associations remained statistically significant after adjustment for clinical and demographic confounders, as well as in sensitivity analysis, excluding patients with diabetes mellitus. In attempting to identify potential mechanisms involved in this correlation, we show increased expressions of E1, E214K, E3αI, E3αII, MuRF-1, and atrogin-1 in skeletal muscle tissue obtained from an animal model of chronic kidney disease.
CONCLUSION - These data suggest that systemic inflammation is a strong and independent determinant of skeletal muscle protein homeostasis in MHD patients, providing rationale for further studies using anticytokine therapies in patients with underlying systemic inflammation.
FUNDING - This study was in part supported by NIH grants R01 DK45604 and 1K24 DK62849, the Clinical Translational Science Award UL1-TR000445 from the National Center for Advancing Translational Sciences, the Veterans Administration Merit Award I01 CX000414, the SatelliteHealth Normon Coplon Extramural Grant Program, and the FDA grant 000943.
0 Communities
2 Members
0 Resources
25 MeSH Terms
Chronicle of a Neuronal Death Foretold: Preventing Aging by Keeping MGRN1 at the Nucleus.
Ortolano NA, Gama V
(2017) Mol Cell 66: 301-303
MeSH Terms: Ubiquitin-Protein Ligases
Show Abstract · Added July 10, 2017
In this issue of Molecular Cell, Benvegnù et al. (2017) report an unexpected phenomenon by which the E3 ligase mahogunin ring finger-1 (MGRN1) translocates to the nucleus in an age-dependent manner, revealing an intriguing mechanism that allows for an adaptive neuronal response to proteotoxic stress, often seen with aging.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
1 MeSH Terms
Identification of a Paralog-Specific Notch1 Intracellular Domain Degron.
Broadus MR, Chen TW, Neitzel LR, Ng VH, Jodoin JN, Lee LA, Salic A, Robbins DJ, Capobianco AJ, Patton JG, Huppert SS, Lee E
(2016) Cell Rep 15: 1920-9
MeSH Terms: Amino Acid Sequence, Animals, Cell Extracts, Embryo, Nonmammalian, F-Box Proteins, HEK293 Cells, Humans, Muscle Proteins, Mutation, Protein Binding, Protein Domains, Protein Stability, Proteolysis, Receptor, Notch1, Regulatory Sequences, Nucleic Acid, Sequence Homology, Amino Acid, Transcription, Genetic, Ubiquitin-Protein Ligases, Xenopus, Zebrafish
Show Abstract · Added February 13, 2017
Upon Notch pathway activation, the receptor is cleaved to release the Notch intracellular domain (NICD), which translocates to the nucleus to activate gene transcription. Using Xenopus egg extracts, we have identified a Notch1-specific destruction signal (N1-Box). We show that mutations in the N1-Box inhibit NICD1 degradation and that the N1-Box is transferable for the promotion of degradation of heterologous proteins in Xenopus egg extracts and in cultured human cells. Mutation of the N1-Box enhances Notch1 activity in cultured human cells and zebrafish embryos. Human cancer mutations within the N1-Box enhance Notch1 signaling in transgenic zebrafish, highlighting the physiological relevance of this destruction signal. We find that binding of the Notch nuclear factor, CSL, to the N1-Box blocks NICD1 turnover. Our studies reveal a mechanism by which degradation of NICD1 is regulated by the N1-Box to minimize stochastic flux and to establish a threshold for Notch1 pathway activation.
Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
20 MeSH Terms
Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease.
Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L
(2016) Nat Rev Clin Oncol 13: 674-690
MeSH Terms: Androgen Antagonists, BRCA2 Protein, Biomarkers, Tumor, Clinical Trials as Topic, Female, Humans, Immune System, Immunotherapy, Mitogen-Activated Protein Kinases, Molecular Targeted Therapy, Mutation, Neoplastic Stem Cells, Phosphoinositide-3 Kinase Inhibitors, Poly(ADP-ribose) Polymerase Inhibitors, Prognosis, Triple Negative Breast Neoplasms, Ubiquitin-Protein Ligases
Show Abstract · Added April 6, 2017
Chemotherapy is the primary established systemic treatment for patients with triple-negative breast cancer (TNBC) in both the early and advanced-stages of the disease. The lack of targeted therapies and the poor prognosis of patients with TNBC have fostered a major effort to discover actionable molecular targets to treat patients with these tumours. Massively parallel sequencing and other 'omics' technologies have revealed an unexpected level of heterogeneity of TNBCs and have led to the identification of potentially actionable molecular features in some TNBCs, such as germline BRCA1/2 mutations or 'BRCAness', the presence of the androgen receptor, and several rare genomic alterations. Whether these alterations are molecular 'drivers', however, has not been clearly established. A subgroup of TNBCs shows a high degree of tumour-infiltrating lymphocytes that also correlates with a lower risk of disease relapse and a higher likelihood of benefit from chemotherapy. Proof-of-principle studies with immune-checkpoint inhibitors in advanced-stage TNBC have yielded promising results, indicating the potential benefit of immunotherapy for patients with TNBC. In this Review, we discuss the most relevant molecular findings in TNBC from the past decade and the most promising therapeutic opportunities derived from these data.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Antagonistic roles for the ubiquitin ligase Asr1 and the ubiquitin-specific protease Ubp3 in subtelomeric gene silencing.
McCann TS, Guo Y, McDonald WH, Tansey WP
(2016) Proc Natl Acad Sci U S A 113: 1309-14
MeSH Terms: Chromatography, Affinity, Gene Silencing, Peptide Hydrolases, Saccharomyces cerevisiae Proteins, Telomere, Ubiquitin-Protein Ligases
Show Abstract · Added January 26, 2016
Ubiquitin, and components of the ubiquitin-proteasome system, feature extensively in the regulation of gene transcription. Although there are many examples of how ubiquitin controls the activity of transcriptional regulators and coregulators, there are few examples of core components of the transcriptional machinery that are directly controlled by ubiquitin-dependent processes. The budding yeast protein Asr1 is the prototypical member of the RPC (RING, PHD, CBD) family of ubiquitin-ligases, characterized by the presence of amino-terminal RING (really interesting new gene) and PHD (plant homeo domain) fingers and a carboxyl-terminal domain that directly binds the largest subunit of RNA polymerase II (pol II), Rpb1, in response to phosphorylation events tied to the initiation of transcription. Asr1-mediated oligo-ubiquitylation of pol II leads to ejection of two core subunits of the enzyme and is associated with inhibition of polymerase function. Here, we present evidence that Asr1-mediated ubiquitylation of pol II is required for silencing of subtelomeric gene transcription. We show that Asr1 associates with telomere-proximal chromatin and that disruption of the ubiquitin-ligase activity of Asr1--or mutation of ubiquitylation sites within Rpb1--induces transcription of silenced gene sequences. In addition, we report that Asr1 associates with the Ubp3 deubiquitylase and that Asr1 and Ubp3 play antagonistic roles in setting transcription levels from silenced genes. We suggest that control of pol II by nonproteolytic ubiquitylation provides a mechanism to enforce silencing by transient and reversible inhibition of pol II activity at subtelomeric chromatin.
0 Communities
2 Members
0 Resources
6 MeSH Terms
CacyBP/SIP--Structure and variety of functions.
Topolska-Woś AM, Chazin WJ, Filipek A
(2016) Biochim Biophys Acta 1860: 79-85
MeSH Terms: Calcium-Binding Proteins, Cell Differentiation, Extracellular Signal-Regulated MAP Kinases, Neoplasms, Nuclear Proteins, Phosphorylation, Protein Processing, Post-Translational, S-Phase Kinase-Associated Proteins, Tropomyosin, Ubiquitin-Protein Ligases
Show Abstract · Added March 11, 2020
BACKGROUND - CacyBP/SIP (Calcyclin-Binding Protein and Siah-1 Interacting Protein) is a small modular protein implicated in a wide range of cellular processes. It is expressed in different tissues of mammals but homologs are also found in some lower organisms. In mammals, a high level of CacyBP/SIP is present in tumor cells and in neurons. CacyBP/SIP binds several target proteins such as members of the S100 family, components of a ubiquitin ligase complex, and cytoskeletal proteins.
SCOPE OF REVIEW - CacyBP/SIP has been shown to be involved in protein de-phosphorylation, ubiquitination, cytoskeletal dynamics, regulation of gene expression, cell proliferation, differentiation, and tumorigenesis. This review focuses on very recent reports on CacyBP/SIP structure and function in these important cellular processes.
MAJOR CONCLUSIONS - CacyBP/SIP is a multi-domain and multi-functional protein. Altered levels of CacyBP/SIP in several cancers implicate its involvement in the maintenance of cell homeostasis. Changes in CacyBP/SIP subcellular localization in neurons of AD brains suggest that this protein is strongly linked to neurodegenerative diseases. Elucidation of CacyBP/SIP structure and cellular function is leading to greater understanding of its role in normal physiology and disease pathologies.
GENERAL SIGNIFICANCE - The available results suggest that CacyBP/SIP is a key player in multiple biological processes. Detailed characterization of the physical, biochemical and biological properties of CacyBP/SIP will provide better insight into the regulation of its diverse functions in vivo, and given the association with specific diseases, will help clarify the potential of therapeutic targeting of this protein.
0 Communities
1 Members
0 Resources
MeSH Terms