Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 565

Publication Record

Connections

Arterial Thrombotic Complications of Tyrosine Kinase Inhibitors.
Wu MD, Moslehi JJ, Lindner JR
(2021) Arterioscler Thromb Vasc Biol 41: 3-10
MeSH Terms: Animals, Antineoplastic Agents, Arterial Occlusive Diseases, Humans, Molecular Targeted Therapy, Neoplasms, Protein Kinase Inhibitors, Protein-Tyrosine Kinases, Risk Assessment, Risk Factors, Thrombosis
Show Abstract · Added January 23, 2021
Abnormal expression or function of several classes of kinases contribute to the development of many types of solid and hematologic malignancies. TKs (tyrosine kinases) in particular play a role in tumor growth, metastasis, neovascularization, suppression of immune surveillance, and drug resistance. TKIs (tyrosine kinase inhibitors) targeted to TKs such as BCR-ABL1, VEGF receptors, PDGF receptors, have transformed therapy of certain forms of cancer by providing excellent efficacy with relatively low adverse event rates. Yet some of these agents have been associated with high rates of vascular events, presumably from prothrombotic complications that result in myocardial infarction, stroke, and critical limb ischemia. This review describes the scope of the problem evidenced by clinical experience with some of the most commonly used TKIs, with a focus on TKIs targeted to the BCR-ABL1 (breakpoint cluster region-Abelson 1) translocation. We also discuss the potential mechanisms responsible for arterial thrombotic complications that could lead to mitigation strategies or unique TK targeting strategies to reduce adverse event rates without compromising efficacy.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Tyrosine Kinase Inhibitors in Leukemia and Cardiovascular Events: From Mechanism to Patient Care.
Manouchehri A, Kanu E, Mauro MJ, Aday AW, Lindner JR, Moslehi J
(2020) Arterioscler Thromb Vasc Biol 40: 301-308
MeSH Terms: Cardiovascular Diseases, Humans, Leukemia, Myelogenous, Chronic, BCR-ABL Positive, Patient Care, Protein Kinase Inhibitors, Protein-Tyrosine Kinases
Show Abstract · Added January 15, 2020
Targeted oncology therapies have revolutionized cancer treatment over the last decade and have resulted in improved prognosis for many patients. This advance has emanated from elucidation of pathways responsible for tumorigenesis followed by targeting of these pathways by specific molecules. Cardiovascular care has become an increasingly critical aspect of patient care in part because patients live longer, but also due to potential associated toxicities from these therapies. Because of the targeted nature of cancer therapies, cardiac and vascular side effects may additionally provide insights into the basic biology of vascular disease. We herein provide the example of tyrosine kinase inhibitors utilized in chronic myelogenous leukemia to illustrate this medical transformation. We describe the vascular considerations for the clinical care of chronic myelogenous leukemia patients as well as the emerging literature on mechanisms of toxicities of the individual tyrosine kinase inhibitors. We additionally postulate that basic insights into toxicities of novel cancer therapies may serve as a new platform for investigation in vascular biology and a new translational research opportunity in vascular medicine.
0 Communities
1 Members
0 Resources
6 MeSH Terms
The Pan-Cancer Landscape of Coamplification of the Tyrosine Kinases KIT, KDR, and PDGFRA.
Disel U, Madison R, Abhishek K, Chung JH, Trabucco SE, Matos AO, Frampton GM, Albacker LA, Reddy V, Karadurmus N, Benson A, Webster J, Paydas S, Cabanillas R, Nangia C, Ozturk MA, Millis SZ, Pal SK, Wilky B, Sokol ES, Gay LM, Soman S, Ganesan S, Janeway K, Stephens PJ, Zhu VW, Ou SI, Lovly CM, Gounder M, Schrock AB, Ross JS, Miller VA, Klempner SJ, Ali SM
(2020) Oncologist 25: e39-e47
MeSH Terms: Adolescent, Adult, Aged, Aged, 80 and over, Child, Child, Preschool, Gene Amplification, Humans, Middle Aged, Neoplasms, Receptor Protein-Tyrosine Kinases, Receptor, Platelet-Derived Growth Factor alpha, Vascular Endothelial Growth Factor Receptor-2, Young Adult
Show Abstract · Added September 10, 2020
PURPOSE - Amplifications of receptor tyrosine kinases (RTKS) are therapeutic targets in multiple tumor types (e.g. HER2 in breast cancer), and amplification of the chromosome 4 segment harboring the three RTKs KIT, PDGFRA, and KDR (4q12amp) may be similarly targetable. The presence of 4q12amp has been sporadically reported in small tumor specific series but a large-scale analysis is lacking. We assess the pan-cancer landscape of 4q12amp and provide early clinical support for the feasibility of targeting this amplicon.
EXPERIMENTAL DESIGN - Tumor specimens from 132,872 patients with advanced cancer were assayed with hybrid capture based comprehensive genomic profiling which assays 186-315 genes for all classes of genomic alterations, including amplifications. Baseline demographic data were abstracted, and presence of 4q12amp was defined as 6 or more copies of KIT/KDR/PDGFRA. Concurrent alterations and treatment outcomes with matched therapies were explored in a subset of cases.
RESULTS - Overall 0.65% of cases harbored 4q12amp at a median copy number of 10 (range 6-344). Among cancers with >100 cases in this series, glioblastomas, angiosarcomas, and osteosarcomas were enriched for 4q12amp at 4.7%, 4.8%, and 6.4%, respectively (all p < 0.001), giving an overall sarcoma (n = 6,885) incidence of 1.9%. Among 99 pulmonary adenocarcinoma cases harboring 4q12amp, 50 (50%) lacked any other known driver of NSLCC. Four index cases plus a previously reported case on treatment with empirical TKIs monotherapy had stable disease on average exceeding 20 months.
CONCLUSION - We define 4q12amp as a significant event across the pan-cancer landscape, comparable to known pan-cancer targets such as NTRK and microsatellite instability, with notable enrichment in several cancers such as osteosarcoma where standard treatment is limited. The responses to available TKIs observed in index cases strongly suggest 4q12amp is a druggable oncogenic target across cancers that warrants a focused drug development strategy.
IMPLICATIONS FOR PRACTICE - Coamplification of the receptor tyrosine kinases (rtks) KIT/KDR/PDGFRA (4q12amp) is present broadly across cancers (0.65%), with enrichment in osteosarcoma and gliomas. Evidence for this amplicon having an oncogenic role is the mutual exclusivity of 4q12amp to other known drivers in 50% of pulmonary adenocarcinoma cases. Furthermore, preliminary clinical evidence for driver status comes from four index cases of patients empirically treated with commercially available tyrosine kinase inhibitors with activity against KIT/KDR/PDGFRA who had stable disease for 20 months on average. The sum of these lines of evidence suggests further clinical and preclinical investigation of 4q12amp is warranted as the possible basis for a pan-cancer drug development strategy.
© 2019 The Authors. The Oncologist published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Direct reprogramming to human nephron progenitor-like cells using inducible piggyBac transposon expression of SNAI2-EYA1-SIX1.
Vanslambrouck JM, Woodard LE, Suhaimi N, Williams FM, Howden SE, Wilson SB, Lonsdale A, Er PX, Li J, Maksimovic J, Oshlack A, Wilson MH, Little MH
(2019) Kidney Int 95: 1153-1166
MeSH Terms: Cells, Cultured, Cellular Reprogramming, DNA Transposable Elements, Gene Transfer Techniques, Genetic Engineering, Homeodomain Proteins, Humans, Intracellular Signaling Peptides and Proteins, Nephrons, Nuclear Proteins, Primary Cell Culture, Protein Tyrosine Phosphatases, Regeneration, Snail Family Transcription Factors
Show Abstract · Added March 28, 2019
All nephrons in the mammalian kidney arise from a transient nephron progenitor population that is lost close to the time of birth. The generation of new nephron progenitors and their maintenance in culture are central to the success of kidney regenerative strategies. Using a lentiviral screening approach, we previously generated a human induced nephron progenitor-like state in vitro using a pool of six transcription factors. Here, we sought to develop a more efficient approach for direct reprogramming of human cells that could be applied in vivo. PiggyBac transposons are a non-viral integrating gene delivery system that is suitable for in vivo use and allows for simultaneous delivery of multiple genes. Using an inducible piggyBac transposon system, we optimized a protocol for the direct reprogramming of HK2 cells to induced nephron progenitor-like cells with expression of only 3 transcription factors (SNAI2, EYA1, and SIX1). Culture in conditions supportive of the nephron progenitor state further increased the expression of nephron progenitor genes. The refined protocol was then applied to primary human renal epithelial cells, which integrated into developing nephron structures in vitro and in vivo. Such inducible reprogramming to nephron progenitor-like cells could facilitate direct cellular reprogramming for kidney regeneration.
Copyright © 2019 International Society of Nephrology. All rights reserved.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Variable Response to ALK Inhibitors in NSCLC with a Novel MYT1L-ALK Fusion.
Tsou TC, Gowen K, Ali SM, Miller VA, Schrock AB, Lovly CM, Reckamp KL
(2019) J Thorac Oncol 14: e29-e30
MeSH Terms: Carcinoma, Non-Small-Cell Lung, Humans, Lung Neoplasms, Nerve Tissue Proteins, Protein Kinase Inhibitors, Receptor Protein-Tyrosine Kinases, Transcription Factors
Added September 10, 2020
0 Communities
1 Members
0 Resources
MeSH Terms
Treatment-Induced Tumor Cell Apoptosis and Secondary Necrosis Drive Tumor Progression in the Residual Tumor Microenvironment through MerTK and IDO1.
Werfel TA, Elion DL, Rahman B, Hicks DJ, Sanchez V, Gonzales-Ericsson PI, Nixon MJ, James JL, Balko JM, Scherle PA, Koblish HK, Cook RS
(2019) Cancer Res 79: 171-182
MeSH Terms: Animals, Antineoplastic Agents, Apoptosis, Female, Indoleamine-Pyrrole 2,3,-Dioxygenase, Inflammation, Lapatinib, Lung Neoplasms, Macrophages, Mammary Neoplasms, Experimental, Mice, Necrosis, Phagocytosis, Receptor, ErbB-2, T-Lymphocytes, Regulatory, Tumor Microenvironment, c-Mer Tyrosine Kinase
Show Abstract · Added April 15, 2019
Efferocytosis is the process by which apoptotic cells are cleared from tissue by phagocytic cells. The removal of apoptotic cells prevents them from undergoing secondary necrosis and releasing their inflammation-inducing intracellular contents. Efferocytosis also limits tissue damage by increasing immunosuppressive cytokines and leukocytes and maintains tissue homeostasis by promoting tolerance to antigens derived from apoptotic cells. Thus, tumor cell efferocytosis following cytotoxic cancer treatment could impart tolerance to tumor cells evading treatment-induced apoptosis with deleterious consequences in tumor residual disease. We report here that efferocytosis cleared apoptotic tumor cells in residual disease of lapatinib-treated HER2 mammary tumors in MMTV-Neu mice, increased immunosuppressive cytokines, myeloid-derived suppressor cells (MDSC), and regulatory T cells (Treg). Blockade of efferocytosis induced secondary necrosis of apoptotic cells, but failed to prevent increased tumor MDSCs, Treg, and immunosuppressive cytokines. We found that efferocytosis stimulated expression of IFN-γ, which stimulated the expression of indoleamine-2,3-dioxegenase (IDO) 1, an immune regulator known for driving maternal-fetal antigen tolerance. Combined inhibition of efferocytosis and IDO1 in tumor residual disease decreased apoptotic cell- and necrotic cell-induced immunosuppressive phenotypes, blocked tumor metastasis, and caused tumor regression in 60% of MMTV-Neu mice. This suggests that apoptotic and necrotic tumor cells, via efferocytosis and IDO1, respectively, promote tumor 'homeostasis' and progression. SIGNIFICANCE: These findings show in a model of HER2 breast cancer that necrosis secondary to impaired efferocytosis activates IDO1 to drive immunosuppression and tumor progression.
©2018 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
17 MeSH Terms
AXL Mediates Esophageal Adenocarcinoma Cell Invasion through Regulation of Extracellular Acidification and Lysosome Trafficking.
Maacha S, Hong J, von Lersner A, Zijlstra A, Belkhiri A
(2018) Neoplasia 20: 1008-1022
MeSH Terms: Adenocarcinoma, Animals, Benzocycloheptenes, Biological Transport, Cathepsin B, Cell Line, Tumor, Chick Embryo, Chorioallantoic Membrane, Epithelial-Mesenchymal Transition, Esophageal Neoplasms, Gene Expression Regulation, Neoplastic, Humans, Hydrogen-Ion Concentration, Lactates, Lysosomes, Monocarboxylic Acid Transporters, Proto-Oncogene Proteins, Receptor Protein-Tyrosine Kinases, Symporters, Triazoles
Show Abstract · Added April 10, 2019
Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy that is characterized by resistance to chemotherapy and a poor clinical outcome. The overexpression of the receptor tyrosine kinase AXL is frequently associated with unfavorable prognosis in EAC. Although it is well documented that AXL mediates cancer cell invasion as a downstream effector of epithelial-to-mesenchymal transition, the precise molecular mechanism underlying this process is not completely understood. Herein, we demonstrate for the first time that AXL mediates cell invasion through the regulation of lysosomes peripheral distribution and cathepsin B secretion in EAC cell lines. Furthermore, we show that AXL-dependent peripheral distribution of lysosomes and cell invasion are mediated by extracellular acidification, which is potentiated by AXL-induced secretion of lactate through AKT-NF-κB-dependent MCT-1 regulation. Our novel mechanistic findings support future clinical studies to evaluate the therapeutic potential of the AXL inhibitor R428 (BGB324) in highly invasive EAC.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Matrix stiffness regulates vascular integrity through focal adhesion kinase activity.
Wang W, Lollis EM, Bordeleau F, Reinhart-King CA
(2019) FASEB J 33: 1199-1208
MeSH Terms: Adherens Junctions, Animals, Antigens, CD, Cadherins, Capillary Permeability, Chick Embryo, Endothelium, Vascular, Enzyme Activation, Extracellular Matrix, Female, Focal Adhesion Protein-Tyrosine Kinases, Human Umbilical Vein Endothelial Cells, Humans, Mice, Mice, Transgenic, Phosphorylation, Protein Transport, Tyrosine, src-Family Kinases
Show Abstract · Added April 10, 2019
Tumor vasculature is known to be more permeable than the vasculature found in healthy tissue, which in turn can lead to a more aggressive tumor phenotype and impair drug delivery into tumors. While the stiffening of the stroma surrounding solid tumors has been reported to increase vascular permeability, the mechanism of this process remains unclear. Here, we utilize an in vitro model of tumor stiffening, ex ovo culture, and a mouse model to investigate the molecular mechanism by which matrix stiffening alters endothelial barrier function. Our data indicate that the increased endothelial permeability caused by heightened matrix stiffness can be prevented by pharmaceutical inhibition of focal adhesion kinase (FAK) both in vitro and ex ovo. Matrix stiffness-mediated FAK activation determines Src localization to cell-cell junctions, which then induces increased vascular endothelial cadherin phosphorylation both in vitro and in vivo. Endothelial cells in stiff tumors have more activated Src and higher levels of phosphorylated vascular endothelial cadherin at adherens junctions compared to endothelial cells in more compliant tumors. Altogether, our data indicate that matrix stiffness regulates endothelial barrier integrity through FAK activity, providing one mechanism by which extracellular matrix stiffness regulates endothelial barrier function. Additionally, our work also provides further evidence that FAK is a promising potential target for cancer therapy because FAK plays a critical role in the regulation of endothelial barrier integrity.-Wang, W., Lollis, E. M., Bordeleau, F., Reinhart-King, C. A. Matrix stiffness regulates vascular integrity through focal adhesion kinase activity.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Modulation of ClC-3 gating and proton/anion exchange by internal and external protons and the anion selectivity filter.
Rohrbough J, Nguyen HN, Lamb FS
(2018) J Physiol 596: 4091-4119
MeSH Terms: Anions, Cell Membrane, Chloride Channels, Glutamic Acid, HEK293 Cells, Humans, Hydrogen-Ion Concentration, Ion Channel Gating, Ion Transport, Kinetics, Mutation, Protons, Tyrosine
Show Abstract · Added March 26, 2019
KEY POINTS - The ClC-3 2Cl /1H exchanger modulates endosome pH and Cl concentration. We investigated the relationships between ClC-3-mediated ion transport (steady-state transport current, I ), gating charge (Q) and cytoplasmic alkalization. ClC-3 transport is functionally unidirectional. ClC-5 and ClC-3 display indistinguishable exchange ratios, but ClC-3 cycling is less "efficient", as reflected by a large Q/I . An M531A mutation predicted to increase water-wire stability and cytoplasmic proton supply improves efficiency. Protonation (pH 5.0) of the outer glutamate gate (Glu ; E224) reduces Q, inhibits transport, and weakens coupling. Removal of the central tyrosine anion gate (Y572S) greatly increases uncoupled anion current. Tyrosine -OH removal (Y572F) alters anion selectivity and impairs coupling. E224 and Y572 act as anion barriers, and contribute to gating. The Y572 side chain and -OH regulate Q movement kinetics and voltage dependence. E224 and Y572 interact to create a "closed" inner gate conformation that maintains coupling during cycling.
ABSTRACT - We utilized plasma membrane-localized ClC-3 to investigate relationships between steady-state transport current (I ), gating charge (Q) movement, and cytoplasmic alkalization rate. ClC-3 exhibited lower transport efficiency than ClC-5, as reflected by a larger Q/I ratio, but an indistinguishable Cl /H coupling ratio. External SCN reduced H transport rate and uncoupled anion/H exchange by 80-90%. Removal of the external gating glutamate ("Glu ") (E224A mutation) reduced Q and abolished H transport. We hypothesized that Methionine 531 (M531) impedes "water wire" H transfer from the cytoplasm to E224. Accordingly, an M531A mutation decreased the Q/I ratio by 50% and enhanced H transport. External protons (pH 5.0) inhibited I and markedly reduced Q while shifting the Q-voltage (V) relationship positively. The Cl /H coupling ratio at pH 5.0 was significantly increased, consistent with externally protonated Glu adopting an outward/open position. Internal "anion gate" removal (Y572S) dramatically increased I and impaired coupling, without slowing H transport rate. Loss of both gates (Y572S/E224A) resulted in a large "open pore" conductance. Y572F (removing only the phenolic hydroxide) and Y572S shortened Q duration similarly, resulting in faster Q kinetics at all voltages. These data reveal a complex relationship between Q and ion transport. Q/I must be assessed together with coupling ratio to properly interpret efficiency. Coupling and transport rate are influenced by the anion, internal proton supply and external protons. Y572 regulates H coupling as well as anion selectivity, and interacts directly with E224. Disruption of this "closed gate" conformation by internal protons may represent a critical step in the ClC-3 transport cycle.
© 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Adrenal serotonin derives from accumulation by the antidepressant-sensitive serotonin transporter.
Brindley RL, Bauer MB, Walker LA, Quinlan MA, Carneiro AMD, Sze JY, Blakely RD, Currie KPM
(2019) Pharmacol Res 140: 56-66
MeSH Terms: Adrenal Glands, Animals, Antidepressive Agents, Female, Male, Mesencephalon, Mice, Transgenic, Models, Animal, Rhombencephalon, Serotonin, Serotonin Plasma Membrane Transport Proteins, Spinal Cord, Tyrosine 3-Monooxygenase
Show Abstract · Added August 8, 2018
Adrenal chromaffin cells comprise the neuroendocrine arm of the sympathetic nervous system and secrete catecholamines to coordinate the appropriate stress response. Deletion of the serotonin (5-HT) transporter (SERT) gene in mice (SERT mice) or pharmacological block of SERT function in rodents and humans augments this sympathoadrenal stress response (epinephrine secretion). The prevailing assumption is that loss of CNS SERT alters central drive to the peripheral sympathetic nervous system. Adrenal chromaffin cells also prominently express SERT where it might coordinate accumulation of 5-HT for reuse in the autocrine control of stress-evoked catecholamine secretion. To help test this hypothesis, we have generated a novel mouse model with selective excision of SERT in the peripheral sympathetic nervous system (SERT), generated by crossing floxed SERT mice with tyrosine hydroxylase Cre driver mice. SERT expression, assessed by western blot, was abolished in the adrenal gland but not perturbed in the CNS of SERT mice. SERT-mediated [H] 5-HT uptake was unaltered in midbrain, hindbrain, and spinal cord synaptosomes, confirming transporter function was intact in the CNS. Endogenous midbrain and whole blood 5-HT homeostasis was unperturbed in SERT mice, contrasting with the depleted 5-HT content in SERT mice. Selective SERT excision reduced adrenal gland 5-HT content by ≈ 50% in SERT mice but had no effect on adrenal catecholamine content. This novel model confirms that SERT expressed in adrenal chromaffin cells is essential for maintaining wild-type levels of 5-HT and provides a powerful tool to help dissect the role of SERT in the sympathetic stress response.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms