Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 78

Publication Record

Connections

The C-terminal region of A-kinase anchor protein 350 (AKAP350A) enables formation of microtubule-nucleation centers and interacts with pericentriolar proteins.
Kolobova E, Roland JT, Lapierre LA, Williams JA, Mason TA, Goldenring JR
(2017) J Biol Chem 292: 20394-20409
MeSH Terms: A Kinase Anchor Proteins, Biomarkers, Cell Line, Centrosome, Cytoskeletal Proteins, Humans, Imaging, Three-Dimensional, Intracellular Signaling Peptides and Proteins, Luminescent Proteins, Microscopy, Electron, Transmission, Microtubule-Associated Proteins, Microtubule-Organizing Center, Models, Molecular, Nerve Tissue Proteins, Peptide Fragments, Phosphoproteins, Protein Interaction Domains and Motifs, Protein Interaction Mapping, Protein Multimerization, Proteomics, RNA Interference, Recombinant Fusion Proteins, Recombinant Proteins, Two-Hybrid System Techniques
Show Abstract · Added April 3, 2018
Microtubules in animal cells assemble (nucleate) from both the centrosome and the cis-Golgi cisternae. A-kinase anchor protein 350 kDa (AKAP350A, also called AKAP450/CG-NAP/AKAP9) is a large scaffolding protein located at both the centrosome and Golgi apparatus. Previous findings have suggested that AKAP350 is important for microtubule dynamics at both locations, but how this scaffolding protein assembles microtubule nucleation machinery is unclear. Here, we found that overexpression of the C-terminal third of AKAP350A, enhanced GFP-AKAP350A(2691-3907), induces the formation of multiple microtubule-nucleation centers (MTNCs). Nevertheless, these induced MTNCs lacked "true" centriole proteins, such as Cep135. Mapping analysis with AKAP350A truncations demonstrated that AKAP350A contains discrete regions responsible for promoting or inhibiting the formation of multiple MTNCs. Moreover, GFP-AKAP350A(2691-3907) recruited several pericentriolar proteins to MTNCs, including γ-tubulin, pericentrin, Cep68, Cep170, and Cdk5RAP2. Proteomic analysis indicated that Cdk5RAP2 and Cep170 both interact with the microtubule nucleation-promoting region of AKAP350A, whereas Cep68 interacts with the distal C-terminal AKAP350A region. Yeast two-hybrid assays established a direct interaction of Cep170 with AKAP350A. Super-resolution and deconvolution microscopy analyses were performed to define the association of AKAP350A with centrosomes, and these studies disclosed that AKAP350A spans the bridge between centrioles, co-localizing with rootletin and Cep68 in the linker region. siRNA-mediated depletion of AKAP350A caused displacement of both Cep68 and Cep170 from the centrosome. These results suggest that AKAP350A acts as a scaffold for factors involved in microtubule nucleation at the centrosome and coordinates the assembly of protein complexes associating with the intercentriolar bridge.
0 Communities
1 Members
0 Resources
MeSH Terms
Prp40 Homolog A Is a Novel Centrin Target.
Díaz Casas A, Chazin WJ, Pastrana-Ríos B
(2017) Biophys J 112: 2529-2539
MeSH Terms: Binding Sites, Calorimetry, Carrier Proteins, Chlamydomonas reinhardtii, Circular Dichroism, Humans, Hydrophobic and Hydrophilic Interactions, Protein Unfolding, Recombinant Proteins, Sequence Homology, Amino Acid, Spectroscopy, Fourier Transform Infrared, Thermodynamics, Trimethoprim, Sulfamethoxazole Drug Combination, Two-Hybrid System Techniques
Show Abstract · Added March 24, 2018
Pre-mRNA processing protein 40 (Prp40) is a nuclear protein that has a role in pre-mRNA splicing. Prp40 possesses two leucine-rich nuclear export signals, but little is known about the function of Prp40 in the export process. Another protein that has a role in protein export is centrin, a member of the EF-hand superfamily of Ca-binding proteins. Prp40 was found to be a centrin target by yeast-two-hybrid screening using both Homo sapiens centrin 2 (Hscen2) and Chlamydomonas reinhardtii centrin (Crcen). We identified a centrin-binding site within H. sapiens Prp40 homolog A (HsPrp40A), which contains a hydrophobic triad WLL that is known to be important in the interaction with centrin. This centrin-binding site is highly conserved within the first nuclear export signal consensus sequence identified in Saccharomyces cerevisiae Prp40. Here, we examine the interaction of HsPrp40A peptide (HsPrp40Ap) with both Hscen2 and Crcen by isothermal titration calorimetry. We employed the thermodynamic parameterization to estimate the polar and apolar surface area of the interface. In addition, we have defined the molecular mechanism of thermally induced unfolding and dissociation of the Crcen-HsPrp40Ap complex using two-dimensional infrared correlation spectroscopy. These complementary techniques showed for the first time, to our knowledge, that HsPrp40Ap interacts with centrin in vitro, supporting a coupled functional role for these proteins in pre-mRNA splicing.
Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC.
Thomas LR, Wang Q, Grieb BC, Phan J, Foshage AM, Sun Q, Olejniczak ET, Clark T, Dey S, Lorey S, Alicie B, Howard GC, Cawthon B, Ess KC, Eischen CM, Zhao Z, Fesik SW, Tansey WP
(2015) Mol Cell 58: 440-52
MeSH Terms: Amino Acid Motifs, Amino Acid Sequence, Animals, Anisotropy, Binding Sites, Carcinogenesis, Chromatin, Fluorescence Polarization, HEK293 Cells, Humans, Mice, Mice, Nude, Models, Molecular, Molecular Sequence Data, Mutation, NIH 3T3 Cells, Protein Binding, Protein Structure, Tertiary, Proteins, Proto-Oncogene Proteins c-myc, Sequence Homology, Amino Acid, Two-Hybrid System Techniques
Show Abstract · Added May 15, 2015
MYC is an oncoprotein transcription factor that is overexpressed in the majority of malignancies. The oncogenic potential of MYC stems from its ability to bind regulatory sequences in thousands of target genes, which depends on interaction of MYC with its obligate partner, MAX. Here, we show that broad association of MYC with chromatin also depends on interaction with the WD40-repeat protein WDR5. MYC binds WDR5 via an evolutionarily conserved "MYC box IIIb" motif that engages a shallow, hydrophobic cleft on the surface of WDR5. Structure-guided mutations in MYC that disrupt interaction with WDR5 attenuate binding of MYC at ∼80% of its chromosomal locations and disable its ability to promote induced pluripotent stem cell formation and drive tumorigenesis. Our data reveal WDR5 as a key determinant for MYC recruitment to chromatin and uncover a tractable target for the discovery of anticancer therapies against MYC-driven tumors.
Copyright © 2015 Elsevier Inc. All rights reserved.
0 Communities
3 Members
0 Resources
22 MeSH Terms
Pyruvate formate-lyase interacts directly with the formate channel FocA to regulate formate translocation.
Doberenz C, Zorn M, Falke D, Nannemann D, Hunger D, Beyer L, Ihling CH, Meiler J, Sinz A, Sawers RG
(2014) J Mol Biol 426: 2827-39
MeSH Terms: Acetyltransferases, Chromatography, Liquid, Cross-Linking Reagents, Escherichia coli, Escherichia coli Proteins, Formates, Immunoprecipitation, Membrane Transport Proteins, Models, Molecular, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Two-Hybrid System Techniques
Show Abstract · Added January 24, 2015
The FNT (formate-nitrite transporters) form a superfamily of pentameric membrane channels that translocate monovalent anions across biological membranes. FocA (formate channel A) translocates formate bidirectionally but the mechanism underlying how translocation of formate is controlled and what governs substrate specificity remains unclear. Here we demonstrate that the normally soluble dimeric enzyme pyruvate formate-lyase (PflB), which is responsible for intracellular formate generation in enterobacteria and other microbes, interacts specifically with FocA. Association of PflB with the cytoplasmic membrane was shown to be FocA dependent and purified, Strep-tagged FocA specifically retrieved PflB from Escherichia coli crude extracts. Using a bacterial two-hybrid system, it could be shown that the N-terminus of FocA and the central domain of PflB were involved in the interaction. This finding was confirmed by chemical cross-linking experiments. Using constraints imposed by the amino acid residues identified in the cross-linking study, we provide for the first time a model for the FocA-PflB complex. The model suggests that the N-terminus of FocA is important for interaction with PflB. An in vivo assay developed to monitor changes in formate levels in the cytoplasm revealed the importance of the interaction with PflB for optimal translocation of formate by FocA. This system represents a paradigm for the control of activity of FNT channel proteins.
Copyright © 2014 Elsevier Ltd. All rights reserved.
1 Communities
1 Members
0 Resources
11 MeSH Terms
In silico analysis and experimental verification of OSR1 kinase - Peptide interaction.
Austin TM, Nannemann DP, Deluca SL, Meiler J, Delpire E
(2014) J Struct Biol 187: 58-65
MeSH Terms: Amino Acid Sequence, Animals, Computer Simulation, Crystallography, X-Ray, Gene Expression, Humans, Hydrogen Bonding, Hydrophobic and Hydrophilic Interactions, Mice, Models, Molecular, Molecular Sequence Data, Mutation, Protein Binding, Protein Interaction Domains and Motifs, Protein Structure, Secondary, Protein-Serine-Threonine Kinases, Recombinant Fusion Proteins, Saccharomyces cerevisiae, Two-Hybrid System Techniques
Show Abstract · Added January 24, 2015
The oxidative-stress-responsive kinase 1 (OSR1) and the STE20/SPS1-related proline/alanine-rich kinase (SPAK) are key enzymes in a signaling cascade regulating the activity of Na(+)-K(+)-2Cl(-) cotransporters (NKCC1-2) and Na(+)-Cl(-) cotransporter (NCC). Both kinases have a conserved carboxyl-terminal (CCT) domain, which recognizes a unique peptide motif present in OSR1- and SPAK-activating kinases (with-no-lysine kinase 1 (WNK1) and WNK4) as well as their substrates (NKCC1, NKCC2, and NCC). Utilizing various modalities of the Rosetta Molecular Modeling Software Suite including flexible peptide docking and protein design, we comprehensively explored the sequence space recognized by the CCT domain. Specifically, we studied single residue mutations as well as complete unbiased designs of a hexapeptide substrate. The computational study started from a crystal structure of the CCT domain of OSR1 in complex with a hexapeptide derived from WNK4. Point mutations predicted to be favorable include Arg to His or Trp substitutions at position 2 and a Phe to Tyr substitution at position 3 of the hexapeptide. In addition, de novo design yielded two peptides predicted to bind to the CCT domain: FRFQVT and TRFDVT. These results, which indicate a little bit more freedom in the composition of the peptide, were confirmed through the use of yeast two-hybrid screening.
Copyright © 2014 Elsevier Inc. All rights reserved.
1 Communities
1 Members
0 Resources
19 MeSH Terms
TRIP/NOPO E3 ubiquitin ligase promotes ubiquitylation of DNA polymerase η.
Wallace HA, Merkle JA, Yu MC, Berg TG, Lee E, Bosco G, Lee LA
(2014) Development 141: 1332-41
MeSH Terms: Active Transport, Cell Nucleus, Animals, Animals, Genetically Modified, DNA Damage, DNA-Directed DNA Polymerase, Drosophila Proteins, Drosophila melanogaster, Female, Gene Expression Regulation, Developmental, Gene Expression Regulation, Enzymologic, Genomic Instability, HeLa Cells, Humans, Models, Biological, Mutation, Signal Transduction, Tumor Necrosis Factor Receptor-Associated Peptides and Proteins, Two-Hybrid System Techniques, Ubiquitin-Protein Ligases, Ubiquitination
Show Abstract · Added March 20, 2014
We previously identified a Drosophila maternal effect-lethal mutant named 'no poles' (nopo). Embryos from nopo females undergo mitotic arrest with barrel-shaped, acentrosomal spindles during the rapid cycles of syncytial embryogenesis because of activation of a Chk2-mediated DNA checkpoint. NOPO is the Drosophila homolog of human TNF receptor associated factor (TRAF)-interacting protein (TRIP), which has been implicated in TNF signaling. NOPO and TRIP contain RING domains closely resembling those of known E3 ubiquitin ligases. We herein sought to elucidate the mechanism by which TRIP/NOPO promotes genomic stability by performing a yeast two-hybrid screen to identify potential substrates/interactors. We identified members of the Y-family of DNA polymerases that facilitate replicative bypass of damaged DNA (translesion synthesis) as TRIP interactors. We show that TRIP and NOPO co-immunoprecipitate with human and Drosophila Polη, respectively, from cultured cells. We generated a null mutation in Drosophila Polη (dPolη) and found that dPolη-derived embryos have increased sensitivity to ultraviolet irradiation and exhibit nopo-like mitotic spindle defects. dPolη and nopo interact genetically in that overexpression of dPolη in hypomorphic nopo-derived embryos suppresses nopo phenotypes. We observed enhanced ubiquitylation of Polη by TRIP and NOPO E3 ligases in human cells and Drosophila embryos, respectively, and show that TRIP promotes hPolη localization to nuclear foci in human cells. We present a model in which TRIP/NOPO ubiquitylates Polη to positively regulate its activity in translesion synthesis.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Respiratory syncytial virus assembles into structured filamentous virion particles independently of host cytoskeleton and related proteins.
Shaikh FY, Utley TJ, Craven RE, Rogers MC, Lapierre LA, Goldenring JR, Crowe JE
(2012) PLoS One 7: e40826
MeSH Terms: Animals, Cell Line, Contractile Proteins, Cytoskeletal Proteins, Cytoskeleton, Filamins, Gene Expression Regulation, Gene Knockdown Techniques, Host-Pathogen Interactions, Humans, Microfilament Proteins, Protein Transport, Respiratory Syncytial Viruses, Two-Hybrid System Techniques, Virion, Virus Assembly
Show Abstract · Added December 5, 2013
Respiratory syncytial virus (RSV) is a single-stranded RNA virus that assembles into viral filaments at the cell surface. Virus assembly often depends on the ability of a virus to use host proteins to accomplish viral tasks. Since the fusion protein cytoplasmic tail (FCT) is critical for viral filamentous assembly, we hypothesized that host proteins important for viral assembly may be recruited by the FCT. Using a yeast two-hybrid screen, we found that filamin A interacted with FCT, and mammalian cell experiments showed it localized to viral filaments but did not affect viral replication. Furthermore, we found that a number of actin-associated proteins also were excluded from viral filaments. Actin or tubulin cytoskeletal rearrangement was not necessary for F trafficking to the cell surface or for viral assembly into filaments, but was necessary for optimal viral replication and may be important for anchoring viral filaments. These findings suggest that RSV assembly into filaments occurs independently of actin polymerization and that viral proteins are the principal drivers for the mechanical tasks involved with formation of complex, structured RSV filaments at the host cell plasma membrane.
2 Communities
3 Members
0 Resources
16 MeSH Terms
Expression and localization of myosin-1d in the developing nervous system.
Benesh AE, Fleming JT, Chiang C, Carter BD, Tyska MJ
(2012) Brain Res 1440: 9-22
MeSH Terms: Amidohydrolases, Animals, Axons, Cerebellum, Fluorescent Antibody Technique, Mice, Microscopy, Confocal, Myelin Sheath, Myosins, Neurons, Oligodendroglia, Purkinje Cells, Sciatic Nerve, Two-Hybrid System Techniques
Show Abstract · Added January 23, 2013
Myosin-1d is a monomeric actin-based motor found in a wide range of tissues, but highly expressed in the nervous system. Previous microarray studies suggest that myosin-1d is found in oligodendrocytes where transcripts are upregulated during the maturation of these cells. Myosin-1d was also identified as a component of myelin-containing subcellular fractions in proteomic studies and mutations in MYO1D have been linked to autism. Despite the potential implications of these previous studies, there is little information on the expression and localization of myosin-1d in the developing nervous system. Therefore, we analyzed myosin-1d expression patterns in the peripheral and central nervous systems during postnatal development. In mouse sciatic nerve, myosin-1d is expressed along the axon and in the ensheathing myelin compartment. Analysis of mouse cerebellum prior to myelination at day 3 reveals that myosin-1d is present in the Purkinje cell layer, granule cell layer, and region of the cerebellar nuclei. Upon the onset of myelination, myosin-1d enrichment expands along axonal tracts, while still present in the Purkinje and granule cell layers. However, myosin-1d was undetectable in oligodendrocyte progenitor cells at early and late time points. We also show that myosin-1d interacts and is co-expressed with aspartoacylase, an enzyme that plays a key role in fatty acid synthesis throughout the nervous system. Together, these studies provide a foundation for understanding the role of myosin-1d in neurodevelopment and neurological disorders.
Copyright © 2011 Elsevier B.V. All rights reserved.
1 Communities
4 Members
0 Resources
14 MeSH Terms
Defining genome maintenance pathways using functional genomic approaches.
Bansbach CE, Cortez D
(2011) Crit Rev Biochem Mol Biol 46: 327-41
MeSH Terms: Animals, Cell Cycle Proteins, Chromatin, DNA Damage, DNA Repair, DNA Replication, DNA-Binding Proteins, Gene Expression Profiling, Genome, Human, Humans, Mass Spectrometry, Protein Array Analysis, Protein Interaction Mapping, Protein Processing, Post-Translational, Proteomics, RNA Interference, Signal Transduction, Two-Hybrid System Techniques
Show Abstract · Added March 5, 2014
Genome maintenance activities including DNA repair, cell division cycle control, and checkpoint signaling pathways preserve genome integrity and prevent disease. Defects in these pathways cause birth defects, neurodegeneration, premature aging, and cancer. Recent technical advances in functional genomic approaches such as expression profiling, proteomics, and RNA interference (RNAi) technologies have rapidly expanded our knowledge of the proteins that work in these pathways. In this review, we examine the use of these high-throughput methodologies in higher eukaryotic organisms for the interrogation of genome maintenance activities.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Drosophila MMP2 regulates the matrix molecule faulty attraction (Frac) to promote motor axon targeting in Drosophila.
Miller CM, Liu N, Page-McCaw A, Broihier HT
(2011) J Neurosci 31: 5335-47
MeSH Terms: Age Factors, Animals, Animals, Genetically Modified, Axons, Bone Morphogenetic Proteins, Calcium-Binding Proteins, Drosophila, Drosophila Proteins, Embryo, Nonmammalian, Extracellular Matrix Proteins, Gene Expression Regulation, Developmental, Green Fluorescent Proteins, Helix-Loop-Helix Motifs, Humans, Lim Kinases, Matrix Metalloproteinase 2, Microfilament Proteins, Models, Biological, Motor Neurons, Mutation, Neuroglia, Oligodeoxyribonucleotides, Antisense, RNA, Signal Transduction, Two-Hybrid System Techniques
Show Abstract · Added March 5, 2014
Matrix metalloproteinases (MMPs) are widely hypothesized to regulate signaling events through processing of extracellular matrix (ECM) molecules. We previously demonstrated that membrane-associated Mmp2 is expressed in exit glia and contributes to motor axon targeting. To identify possible substrates, we undertook a yeast interaction screen for Mmp2-binding proteins and identified the novel ECM protein faulty attraction (Frac). Frac encodes a multidomain extracellular protein rich in epidermal growth factor (EGF) and calcium-binding EGF domains, related to the vertebrate Fibrillin and Fibulin gene families. It is expressed in mesodermal domains flanking Mmp2-positive glia. The juxtaposition of Mmp2 and Frac proteins raises the possibility that Frac is a proteolytic target of Mmp2. Consistent with this hypothesis, levels of full-length Frac are increased in Mmp2 loss-of-function (LOF) and decreased in Mmp2 gain-of-function (GOF) embryos, indicating that Frac cleavage is Mmp2 dependent. To test whether frac is necessary for axon targeting, we characterized guidance in frac LOF mutants. Motor axons in frac LOF embryos are loosely associated and project ectopically, a phenotype essentially equivalent to that of Mmp2 LOF. The phenotypic similarity between enzyme and substrate mutants argues that Mmp2 activates Frac. In addition, Mmp2 overexpression pathfinding phenotypes depend on frac activity, indicating that Mmp2 is genetically upstream of frac. Last, overexpression experiments suggest that Frac is unlikely to have intrinsic signaling activity, raising the possibility that an Mmp2-generated Frac fragment acts as a guidance cue cofactor. Indeed, we present genetic evidence that Frac regulates a non-canonical LIM kinase 1-dependent bone morphogenetic protein signaling pathway in motoneurons necessary for axon pathfinding during embryogenesis.
0 Communities
1 Members
0 Resources
25 MeSH Terms