, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 48

Publication Record

Connections

Combined CB2 receptor agonist and photodynamic therapy synergistically inhibit tumor growth in triple negative breast cancer.
Zhang J, Zhang S, Liu Y, Su M, Ling X, Liu F, Ge Y, Bai M
(2018) Photodiagnosis Photodyn Ther 24: 185-191
MeSH Terms: Acetamides, Animals, Apoptosis, Cell Line, Tumor, Cell Proliferation, Cell Survival, Combined Modality Therapy, Female, Gene Expression Regulation, Neoplastic, Humans, Indoles, Mice, Neoplasm Recurrence, Local, Phenyl Ethers, Photochemotherapy, Photosensitizing Agents, Quality of Life, Receptor, Cannabinoid, CB2, Receptors, GABA, Singlet Oxygen, Triple Negative Breast Neoplasms, Xenograft Model Antitumor Assays
Show Abstract · Added April 2, 2019
Triple negative breast cancer (TNBC) is the deadliest form of breast cancer because it is more aggressive, diagnosed at later stage and more likely to develop local and systemic recurrence. Many patients do not experience adequate tumor control after current clinical treatments involving surgical removal, chemotherapy and/or radiotherapy, leading to disease progression and significantly decreased quality of life. Here we report a new combinatory therapy strategy involving cannabinoid-based medicine and photodynamic therapy (PDT) for the treatment of TNBC. This combinatory therapy targets two proteins upregulated in TNBC: the cannabinoid CB2 receptor (CBR, a G-protein coupled receptor) and translocator protein (TSPO, a mitochondria membrane receptor). We found that the combined CBR agonist and TSPO-PDT treatment resulted in synergistic inhibition in TNBC cell and tumor growth. This combinatory therapy approach provides new opportunities to treat TNBC with high efficacy. In addition, this study provides new evidence on the therapeutic potential of CBR agonists for cancer.
Copyright © 2018 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Genetic and Phenotypic Diversification of Heterogeneous Tumor Populations.
Elion DL, Cook RS
(2018) Trends Mol Med 24: 655-656
MeSH Terms: Antineoplastic Combined Chemotherapy Protocols, Drug Resistance, Neoplasm, Humans, Neoadjuvant Therapy, Triple Negative Breast Neoplasms
Show Abstract · Added April 15, 2019
Chemotherapy is the most commonly prescribed treatment for patients with aggressive and lethal triple negative breast cancers (TNBCs), which often develop chemoresistance. A recent study combined single nucleus sequencing, single cell RNA sequencing, and evolutionary biology to understand how tumor cells use genetic and phenotypic diversity to evade the selective pressures of neoadjuvant chemotherapy.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Gene expression in triple-negative breast cancer in relation to survival.
Wang S, Beeghly-Fadiel A, Cai Q, Cai H, Guo X, Shi L, Wu J, Ye F, Qiu Q, Zheng Y, Zheng W, Bao PP, Shu XO
(2018) Breast Cancer Res Treat 171: 199-207
MeSH Terms: Adult, Aged, Biomarkers, Tumor, Female, Gene Expression, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, Middle Aged, Neoplasm Grading, Neoplasm Staging, Population Surveillance, Prognosis, Registries, Survival Analysis, Triple Negative Breast Neoplasms
Show Abstract · Added December 6, 2018
PURPOSE - The identification of biomarkers related to the prognosis of triple-negative breast cancer (TNBC) is critically important for improved understanding of the biology that drives TNBC progression.
METHODS - We evaluated gene expression in total RNA isolated from formalin-fixed paraffin-embedded tumor samples using the NanoString nCounter assay for 469 TNBC cases from the Shanghai Breast Cancer Survival Study. We used Cox regression to quantify Hazard Ratios (HR) and corresponding confidence intervals (CI) for overall survival (OS) and disease-free survival (DFS) in models that included adjustment for breast cancer intrinsic subtype. Of 302 genes in our discovery analysis, 22 were further evaluated in relation to OS among 134 TNBC cases from the Nashville Breast Health Study and the Southern Community Cohort Study; 16 genes were further evaluated in relation to DFS in 335 TNBC cases from four gene expression omnibus datasets. Fixed-effect meta-analysis was used to combine results across data sources.
RESULTS - Twofold higher expression of EOMES (HR 0.90, 95% CI 0.83-0.97), RASGRP1 (HR 0.89, 95% CI 0.82-0.97), and SOD2 (HR 0.80, 95% CI 0.66-0.96) was associated with better OS. Twofold higher expression of EOMES (HR 0.89, 95% CI 0.81-0.97) and RASGRP1 (HR 0.87, 95% CI 0.81-0.95) was also associated with better DFS. On the contrary, a doubling of FA2H (HR 1.14, 95% CI 1.06-1.22) and GSPT1 (HR 1.33, 95% CI 1.14-1.55) expression was associated with shorter DFS.
CONCLUSIONS - We identified five genes (EOMES, FA2H, GSPT1, RASGRP1, and SOD2) that may serve as potential prognostic biomarkers and/or therapeutic targets for TNBC.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Selective mTORC2 Inhibitor Therapeutically Blocks Breast Cancer Cell Growth and Survival.
Werfel TA, Wang S, Jackson MA, Kavanaugh TE, Joly MM, Lee LH, Hicks DJ, Sanchez V, Ericsson PG, Kilchrist KV, Dimobi SC, Sarett SM, Brantley-Sieders DM, Cook RS, Duvall CL
(2018) Cancer Res 78: 1845-1858
MeSH Terms: Animals, Antineoplastic Agents, Cell Proliferation, Cell Survival, Disease Models, Animal, Female, Humans, Lapatinib, Mechanistic Target of Rapamycin Complex 2, Mice, Mice, Inbred BALB C, Mice, Nude, Nanoparticles, Protein Kinase Inhibitors, RNA, Small Interfering, Rapamycin-Insensitive Companion of mTOR Protein, Receptor, ErbB-2, Triple Negative Breast Neoplasms, Xenograft Model Antitumor Assays
Show Abstract · Added March 14, 2018
Small-molecule inhibitors of the mTORC2 kinase (torkinibs) have shown efficacy in early clinical trials. However, the torkinibs under study also inhibit the other mTOR-containing complex mTORC1. While mTORC1/mTORC2 combined inhibition may be beneficial in cancer cells, recent reports describe compensatory cell survival upon mTORC1 inhibition due to loss of negative feedback on PI3K, increased autophagy, and increased macropinocytosis. Genetic models suggest that selective mTORC2 inhibition would be effective in breast cancers, but the lack of selective small-molecule inhibitors of mTORC2 have precluded testing of this hypothesis to date. Here we report the engineering of a nanoparticle-based RNAi therapeutic that can effectively silence the mTORC2 obligate cofactor Rictor. Nanoparticle-based Rictor ablation in HER2-amplified breast tumors was achieved following intratumoral and intravenous delivery, decreasing Akt phosphorylation and increasing tumor cell killing. Selective mTORC2 inhibition , combined with the HER2 inhibitor lapatinib, decreased the growth of HER2-amplified breast cancers to a greater extent than either agent alone, suggesting that mTORC2 promotes lapatinib resistance, but is overcome by mTORC2 inhibition. Importantly, selective mTORC2 inhibition was effective in a triple-negative breast cancer (TNBC) model, decreasing Akt phosphorylation and tumor growth, consistent with our findings that RICTOR mRNA correlates with worse outcome in patients with basal-like TNBC. Together, our results offer preclinical validation of a novel RNAi delivery platform for therapeutic gene ablation in breast cancer, and they show that mTORC2-selective targeting is feasible and efficacious in this disease setting. This study describes a nanomedicine to effectively inhibit the growth regulatory kinase mTORC2 in a preclinical model of breast cancer, targeting an important pathogenic enzyme in that setting that has been undruggable to date. .
©2018 American Association for Cancer Research.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Biomarkers for assessing the effectiveness of immunotherapy in breast cancer.
Nixon MJ, Balko JM
(2018) Biomark Med 12: 97-100
MeSH Terms: B7-H1 Antigen, Biomarkers, Tumor, Breast Neoplasms, CTLA-4 Antigen, Female, Humans, Immunotherapy, Ipilimumab, Triple Negative Breast Neoplasms
Added March 14, 2018
0 Communities
1 Members
0 Resources
9 MeSH Terms
MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation.
Lee KM, Giltnane JM, Balko JM, Schwarz LJ, Guerrero-Zotano AL, Hutchinson KE, Nixon MJ, Estrada MV, Sánchez V, Sanders ME, Lee T, Gómez H, Lluch A, Pérez-Fidalgo JA, Wolf MM, Andrejeva G, Rathmell JC, Fesik SW, Arteaga CL
(2017) Cell Metab 26: 633-647.e7
MeSH Terms: Animals, Cell Line, Tumor, Drug Resistance, Neoplasm, Female, Humans, Mice, Nude, Mitochondria, Myeloid Cell Leukemia Sequence 1 Protein, Neoplastic Stem Cells, Oxidative Phosphorylation, Proto-Oncogene Proteins c-myc, Reactive Oxygen Species, Triple Negative Breast Neoplasms
Show Abstract · Added March 14, 2018
Most patients with advanced triple-negative breast cancer (TNBC) develop drug resistance. MYC and MCL1 are frequently co-amplified in drug-resistant TNBC after neoadjuvant chemotherapy. Herein, we demonstrate that MYC and MCL1 cooperate in the maintenance of chemotherapy-resistant cancer stem cells (CSCs) in TNBC. MYC and MCL1 increased mitochondrial oxidative phosphorylation (mtOXPHOS) and the generation of reactive oxygen species (ROS), processes involved in maintenance of CSCs. A mutant of MCL1 that cannot localize in mitochondria reduced mtOXPHOS, ROS levels, and drug-resistant CSCs without affecting the anti-apoptotic function of MCL1. Increased levels of ROS, a by-product of activated mtOXPHOS, led to the accumulation of HIF-1α. Pharmacological inhibition of HIF-1α attenuated CSC enrichment and tumor initiation in vivo. These data suggest that (1) MYC and MCL1 confer resistance to chemotherapy by expanding CSCs via mtOXPHOS and (2) targeting mitochondrial respiration and HIF-1α may reverse chemotherapy resistance in TNBC.
Copyright © 2017. Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Agonist immunotherapy restores T cell function following MEK inhibition improving efficacy in breast cancer.
Dushyanthen S, Teo ZL, Caramia F, Savas P, Mintoff CP, Virassamy B, Henderson MA, Luen SJ, Mansour M, Kershaw MH, Trapani JA, Neeson PJ, Salgado R, McArthur GA, Balko JM, Beavis PA, Darcy PK, Loi S
(2017) Nat Commun 8: 606
MeSH Terms: 4-1BB Ligand, Animals, Breast Neoplasms, Cell Line, Tumor, Cell Proliferation, Female, Humans, Immunotherapy, Lymphocytes, Tumor-Infiltrating, MAP Kinase Kinase 1, MAP Kinase Kinase 2, MAP Kinase Signaling System, Mammary Neoplasms, Animal, Mice, OX40 Ligand, Protein Kinase Inhibitors, Pyridones, Pyrimidinones, T-Lymphocyte Subsets, T-Lymphocytes, Triple Negative Breast Neoplasms
Show Abstract · Added March 14, 2018
The presence of tumor-infiltrating lymphocytes in triple-negative breast cancers is correlated with improved outcomes. Ras/MAPK pathway activation is associated with significantly lower levels of tumor-infiltrating lymphocytes in triple-negative breast cancers and while MEK inhibition can promote recruitment of tumor-infiltrating lymphocytes to the tumor, here we show that MEK inhibition adversely affects early onset T-cell effector function. We show that α-4-1BB and α-OX-40 T-cell agonist antibodies can rescue the adverse effects of MEK inhibition on T cells in both mouse and human T cells, which results in augmented anti-tumor effects in vivo. This effect is dependent upon increased downstream p38/JNK pathway activation. Taken together, our data suggest that although Ras/MAPK pathway inhibition can increase tumor immunogenicity, the negative impact on T-cell activity is functionally important. This undesirable impact is effectively prevented by combination with T-cell immune agonist immunotherapies resulting in superior therapeutic efficacy.MEK inhibition in breast cancer is associated with increased tumour infiltrating lymphocytes (TILs), however, MAPK activity is required for T cells function. Here the authors show that TILs activity following MEK inhibition can be enhanced by agonist immunotherapy resulting in synergic therapeutic effects.
0 Communities
1 Members
0 Resources
21 MeSH Terms
A Predictive Mathematical Modeling Approach for the Study of Doxorubicin Treatment in Triple Negative Breast Cancer.
McKenna MT, Weis JA, Barnes SL, Tyson DR, Miga MI, Quaranta V, Yankeelov TE
(2017) Sci Rep 7: 5725
MeSH Terms: Antibiotics, Antineoplastic, Biostatistics, Cell Line, Tumor, Doxorubicin, Humans, Longitudinal Studies, Models, Biological, Models, Theoretical, Treatment Outcome, Triple Negative Breast Neoplasms
Show Abstract · Added July 23, 2018
Doxorubicin forms the basis of chemotherapy regimens for several malignancies, including triple negative breast cancer (TNBC). Here, we present a coupled experimental/modeling approach to establish an in vitro pharmacokinetic/pharmacodynamic model to describe how the concentration and duration of doxorubicin therapy shape subsequent cell population dynamics. This work features a series of longitudinal fluorescence microscopy experiments that characterize (1) doxorubicin uptake dynamics in a panel of TNBC cell lines, and (2) cell population response to doxorubicin over 30 days. We propose a treatment response model, fully parameterized with experimental imaging data, to describe doxorubicin uptake and predict subsequent population dynamics. We found that a three compartment model can describe doxorubicin pharmacokinetics, and pharmacokinetic parameters vary significantly among the cell lines investigated. The proposed model effectively captures population dynamics and translates well to a predictive framework. In a representative cell line (SUM-149PT) treated for 12 hours with doxorubicin, the mean percent errors of the best-fit and predicted models were 14% (±10%) and 16% (±12%), which are notable considering these statistics represent errors over 30 days following treatment. More generally, this work provides both a template for studies quantitatively investigating treatment response and a scalable approach toward predictions of tumor response in vivo.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers.
Song W, Hwang Y, Youngblood VM, Cook RS, Balko JM, Chen J, Brantley-Sieders DM
(2017) Oncogene 36: 5620-5630
MeSH Terms: Animals, Benzamides, Cell Cycle, Cell Line, Tumor, Cell Proliferation, Cyclin-Dependent Kinase Inhibitor p27, Ephrin-A2, Female, Gene Knockdown Techniques, Humans, Mice, Mice, Inbred NOD, Mice, Nude, Mice, SCID, Neoplasm Recurrence, Local, Niacinamide, Protein Kinase Inhibitors, Proto-Oncogene Proteins c-myb, Triple Negative Breast Neoplasms, Xenograft Model Antitumor Assays
Show Abstract · Added March 14, 2018
Basal-like/triple-negative breast cancers (TNBCs) are among the most aggressive forms of breast cancer, and disproportionally affects young premenopausal women and women of African descent. Patients with TNBC suffer a poor prognosis due in part to a lack of molecularly targeted therapies, which represents a critical barrier for effective treatment. Here, we identify EphA2 receptor tyrosine kinase as a clinically relevant target for TNBC. EphA2 expression is enriched in the basal-like molecular subtype in human breast cancers. Loss of EphA2 function in both human and genetically engineered mouse models of TNBC reduced tumor growth in culture and in vivo. Mechanistically, targeting EphA2 impaired cell cycle progression through S-phase via downregulation of c-Myc and stabilization of the cyclin-dependent kinase inhibitor p27/KIP1. A small molecule kinase inhibitor of EphA2 effectively suppressed tumor cell growth in vivo, including TNBC patient-derived xenografts. Thus, our data identify EphA2 as a novel molecular target for TNBC.
0 Communities
2 Members
0 Resources
20 MeSH Terms
A 3q gene signature associated with triple negative breast cancer organ specific metastasis and response to neoadjuvant chemotherapy.
Qian J, Chen H, Ji X, Eisenberg R, Chakravarthy AB, Mayer IA, Massion PP
(2017) Sci Rep 7: 45828
MeSH Terms: Biomarkers, Tumor, Chemotherapy, Adjuvant, Chromosomes, Human, Pair 3, Disease-Free Survival, Female, Gene Expression Regulation, Neoplastic, Genetic Predisposition to Disease, Humans, Neoplasm Metastasis, RNA-Binding Proteins, Triple Negative Breast Neoplasms
Show Abstract · Added January 29, 2018
Triple negative breast cancers (TNBC) are aggressive tumors, with high rates of metastatic spread and targeted therapies are critically needed. We aimed to assess the prognostic and predictive value of a 3q 19-gene signature identified previously from lung cancer in a collection of 4,801 breast tumor gene expression data. The 3q gene signature had a strong association with features of aggressiveness such as high grade, hormone receptor negativity, presence of a basal-like or TNBC phenotype and reduced distant metastasis free survival. The 3q gene signature was strongly associated with lung metastasis only in TNBC (P < 0.0001, Hazard ratio (HR) 1.44, 95% confidence interval (CI), 1.31-1.60), significantly associated with brain but not bone metastasis regardless of TNBC status. The association of one 3q driver gene FXR1 with distant metastasis in TNBC (P = 0.01) was further validated by immunohistochemistry. In addition, the 3q gene signature was associated with better response to neoadjuvant chemotherapy in TNBC (P < 0.0001) but not in non-TNBC patients. Our study suggests that the 3q gene signature is a novel prognostic marker for lung and/or brain metastasis and a predictive marker for the response to neoadjuvant chemotherapy in TNBC, implying a potential role for 3q genes in the mechanism of organ-specific metastasis.
0 Communities
1 Members
0 Resources
11 MeSH Terms