Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 11

Publication Record


Genome-wide analysis of PDX1 target genes in human pancreatic progenitors.
Wang X, Sterr M, Burtscher I, Chen S, Hieronimus A, Machicao F, Staiger H, Häring HU, Lederer G, Meitinger T, Cernilogar FM, Schotta G, Irmler M, Beckers J, Hrabě de Angelis M, Ray M, Wright CVE, Bakhti M, Lickert H
(2018) Mol Metab 9: 57-68
MeSH Terms: Calcium-Binding Proteins, Cell Differentiation, Cells, Cultured, Chromatin Assembly and Disassembly, Diabetes Mellitus, Type 2, Enhancer Elements, Genetic, Genome-Wide Association Study, Hepatocyte Nuclear Factor 1-beta, Homeodomain Proteins, Humans, Induced Pluripotent Stem Cells, Insulin-Secreting Cells, Intercellular Signaling Peptides and Proteins, Membrane Proteins, Myeloid Ecotropic Viral Integration Site 1 Protein, Polymorphism, Single Nucleotide, Protein Binding, Regulatory Factor X Transcription Factors, Trans-Activators, Transcription Factor 7-Like 2 Protein
Show Abstract · Added February 6, 2018
OBJECTIVE - Homozygous loss-of-function mutations in the gene coding for the homeobox transcription factor (TF) PDX1 leads to pancreatic agenesis, whereas heterozygous mutations can cause Maturity-Onset Diabetes of the Young 4 (MODY4). Although the function of Pdx1 is well studied in pre-clinical models during insulin-producing β-cell development and homeostasis, it remains elusive how this TF controls human pancreas development by regulating a downstream transcriptional program. Also, comparative studies of PDX1 binding patterns in pancreatic progenitors and adult β-cells have not been conducted so far. Furthermore, many studies reported the association between single nucleotide polymorphisms (SNPs) and T2DM, and it has been shown that islet enhancers are enriched in T2DM-associated SNPs. Whether regions, harboring T2DM-associated SNPs are PDX1 bound and active at the pancreatic progenitor stage has not been reported so far.
METHODS - In this study, we have generated a novel induced pluripotent stem cell (iPSC) line that efficiently differentiates into human pancreatic progenitors (PPs). Furthermore, PDX1 and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) was used to identify PDX1 transcriptional targets and active enhancer and promoter regions. To address potential differences in the function of PDX1 during development and adulthood, we compared PDX1 binding profiles from PPs and adult islets. Moreover, combining ChIP-seq and GWAS meta-analysis data we identified T2DM-associated SNPs in PDX1 binding sites and active chromatin regions.
RESULTS - ChIP-seq for PDX1 revealed a total of 8088 PDX1-bound regions that map to 5664 genes in iPSC-derived PPs. The PDX1 target regions include important pancreatic TFs, such as PDX1 itself, RFX6, HNF1B, and MEIS1, which were activated during the differentiation process as revealed by the active chromatin mark H3K27ac and mRNA expression profiling, suggesting that auto-regulatory feedback regulation maintains PDX1 expression and initiates a pancreatic TF program. Remarkably, we identified several PDX1 target genes that have not been reported in the literature in human so far, including RFX3, required for ciliogenesis and endocrine differentiation in mouse, and the ligand of the Notch receptor DLL1, which is important for endocrine induction and tip-trunk patterning. The comparison of PDX1 profiles from PPs and adult human islets identified sets of stage-specific target genes, associated with early pancreas development and adult β-cell function, respectively. Furthermore, we found an enrichment of T2DM-associated SNPs in active chromatin regions from iPSC-derived PPs. Two of these SNPs fall into PDX1 occupied sites that are located in the intronic regions of TCF7L2 and HNF1B. Both of these genes are key transcriptional regulators of endocrine induction and mutations in cis-regulatory regions predispose to diabetes.
CONCLUSIONS - Our data provide stage-specific target genes of PDX1 during in vitro differentiation of stem cells into pancreatic progenitors that could be useful to identify pathways and molecular targets that predispose for diabetes. In addition, we show that T2DM-associated SNPs are enriched in active chromatin regions at the pancreatic progenitor stage, suggesting that the susceptibility to T2DM might originate from imperfect execution of a β-cell developmental program.
Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
1 Communities
0 Members
0 Resources
20 MeSH Terms
Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium.
Ng MCY, Graff M, Lu Y, Justice AE, Mudgal P, Liu CT, Young K, Yanek LR, Feitosa MF, Wojczynski MK, Rand K, Brody JA, Cade BE, Dimitrov L, Duan Q, Guo X, Lange LA, Nalls MA, Okut H, Tajuddin SM, Tayo BO, Vedantam S, Bradfield JP, Chen G, Chen WM, Chesi A, Irvin MR, Padhukasahasram B, Smith JA, Zheng W, Allison MA, Ambrosone CB, Bandera EV, Bartz TM, Berndt SI, Bernstein L, Blot WJ, Bottinger EP, Carpten J, Chanock SJ, Chen YI, Conti DV, Cooper RS, Fornage M, Freedman BI, Garcia M, Goodman PJ, Hsu YH, Hu J, Huff CD, Ingles SA, John EM, Kittles R, Klein E, Li J, McKnight B, Nayak U, Nemesure B, Ogunniyi A, Olshan A, Press MF, Rohde R, Rybicki BA, Salako B, Sanderson M, Shao Y, Siscovick DS, Stanford JL, Stevens VL, Stram A, Strom SS, Vaidya D, Witte JS, Yao J, Zhu X, Ziegler RG, Zonderman AB, Adeyemo A, Ambs S, Cushman M, Faul JD, Hakonarson H, Levin AM, Nathanson KL, Ware EB, Weir DR, Zhao W, Zhi D, Bone Mineral Density in Childhood Study (BMDCS) Group, Arnett DK, Grant SFA, Kardia SLR, Oloapde OI, Rao DC, Rotimi CN, Sale MM, Williams LK, Zemel BS, Becker DM, Borecki IB, Evans MK, Harris TB, Hirschhorn JN, Li Y, Patel SR, Psaty BM, Rotter JI, Wilson JG, Bowden DW, Cupples LA, Haiman CA, Loos RJF, North KE
(2017) PLoS Genet 13: e1006719
MeSH Terms: Adiposity, African Continental Ancestry Group, Anthropometry, Body Mass Index, Chromosome Mapping, European Continental Ancestry Group, Female, Gene Frequency, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Linkage Disequilibrium, Male, Obesity, Polymorphism, Single Nucleotide, Serine Endopeptidases, Transcription Factor 7-Like 2 Protein, Waist-Hip Ratio
Show Abstract · Added August 22, 2017
Genome-wide association studies (GWAS) have identified >300 loci associated with measures of adiposity including body mass index (BMI) and waist-to-hip ratio (adjusted for BMI, WHRadjBMI), but few have been identified through screening of the African ancestry genomes. We performed large scale meta-analyses and replications in up to 52,895 individuals for BMI and up to 23,095 individuals for WHRadjBMI from the African Ancestry Anthropometry Genetics Consortium (AAAGC) using 1000 Genomes phase 1 imputed GWAS to improve coverage of both common and low frequency variants in the low linkage disequilibrium African ancestry genomes. In the sex-combined analyses, we identified one novel locus (TCF7L2/HABP2) for WHRadjBMI and eight previously established loci at P < 5×10-8: seven for BMI, and one for WHRadjBMI in African ancestry individuals. An additional novel locus (SPRYD7/DLEU2) was identified for WHRadjBMI when combined with European GWAS. In the sex-stratified analyses, we identified three novel loci for BMI (INTS10/LPL and MLC1 in men, IRX4/IRX2 in women) and four for WHRadjBMI (SSX2IP, CASC8, PDE3B and ZDHHC1/HSD11B2 in women) in individuals of African ancestry or both African and European ancestry. For four of the novel variants, the minor allele frequency was low (<5%). In the trans-ethnic fine mapping of 47 BMI loci and 27 WHRadjBMI loci that were locus-wide significant (P < 0.05 adjusted for effective number of variants per locus) from the African ancestry sex-combined and sex-stratified analyses, 26 BMI loci and 17 WHRadjBMI loci contained ≤ 20 variants in the credible sets that jointly account for 99% posterior probability of driving the associations. The lead variants in 13 of these loci had a high probability of being causal. As compared to our previous HapMap imputed GWAS for BMI and WHRadjBMI including up to 71,412 and 27,350 African ancestry individuals, respectively, our results suggest that 1000 Genomes imputation showed modest improvement in identifying GWAS loci including low frequency variants. Trans-ethnic meta-analyses further improved fine mapping of putative causal variants in loci shared between the African and European ancestry populations.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes.
Ng MC, Shriner D, Chen BH, Li J, Chen WM, Guo X, Liu J, Bielinski SJ, Yanek LR, Nalls MA, Comeau ME, Rasmussen-Torvik LJ, Jensen RA, Evans DS, Sun YV, An P, Patel SR, Lu Y, Long J, Armstrong LL, Wagenknecht L, Yang L, Snively BM, Palmer ND, Mudgal P, Langefeld CD, Keene KL, Freedman BI, Mychaleckyj JC, Nayak U, Raffel LJ, Goodarzi MO, Chen YD, Taylor HA, Correa A, Sims M, Couper D, Pankow JS, Boerwinkle E, Adeyemo A, Doumatey A, Chen G, Mathias RA, Vaidya D, Singleton AB, Zonderman AB, Igo RP, Sedor JR, FIND Consortium, Kabagambe EK, Siscovick DS, McKnight B, Rice K, Liu Y, Hsueh WC, Zhao W, Bielak LF, Kraja A, Province MA, Bottinger EP, Gottesman O, Cai Q, Zheng W, Blot WJ, Lowe WL, Pacheco JA, Crawford DC, eMERGE Consortium, DIAGRAM Consortium, Grundberg E, MuTHER Consortium, Rich SS, Hayes MG, Shu XO, Loos RJ, Borecki IB, Peyser PA, Cummings SR, Psaty BM, Fornage M, Iyengar SK, Evans MK, Becker DM, Kao WH, Wilson JG, Rotter JI, Sale MM, Liu S, Rotimi CN, Bowden DW, MEta-analysis of type 2 DIabetes in African Americans Consortium
(2014) PLoS Genet 10: e1004517
MeSH Terms: African Americans, Diabetes Mellitus, Type 2, Genome-Wide Association Study, HLA-B27 Antigen, HMGA2 Protein, Humans, KCNQ1 Potassium Channel, Mutant Chimeric Proteins, Polymorphism, Single Nucleotide, Transcription Factor 7-Like 2 Protein
Show Abstract · Added January 20, 2015
Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)
0 Communities
2 Members
0 Resources
10 MeSH Terms
Evaluation of genome-wide association study-identified type 2 diabetes loci in African Americans.
Long J, Edwards T, Signorello LB, Cai Q, Zheng W, Shu XO, Blot WJ
(2012) Am J Epidemiol 176: 995-1001
MeSH Terms: Adult, African Americans, Aged, Alleles, Body Mass Index, Case-Control Studies, Diabetes Mellitus, Type 2, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotype, Humans, KCNQ1 Potassium Channel, Logistic Models, Male, Membrane Proteins, Middle Aged, Polymorphism, Single Nucleotide, Principal Component Analysis, Prospective Studies, RNA-Binding Proteins, Risk Assessment, Risk Factors, Transcription Factor 7-Like 2 Protein, United States
Show Abstract · Added December 10, 2013
Type 2 diabetes (T2D) is up to twice as prevalent among African Americans as Caucasians. Recent genome-wide association studies (GWAS) have identified multiple common genetic risk variants for T2D; however, none of these studies were conducted exclusively among subjects of African ancestry. Investigating these known loci in other populations would be an expedient way to evaluate the generalizability of the current findings. The authors evaluated 29 known T2D loci in a large southeastern US cohort study including 4,288 African Americans (1,554 cases and 2,734 controls) enrolled during 2002-2009. Seven of the 29 single nucleotide polymorphisms (SNPs) examined were found to be associated with T2D risk at P ≤ 0.05, including rs6769511 (IGF2BP2), 2 SNPs in the WFS1 gene (rs4689388 and rs1801214), rs7903146 (TCF7L2), and 3 SNPs in the KCNQ1 gene (rs231362, rs2237892, and rs2237897). Notably, the association for rs7903146 reached the GWAS significance level (P = 3.6 × 10(-8)), with an odds ratio per T allele of 1.32 (95% confidence interval: 1.20, 1.46). Regional analyses using GWAS data from Vanderbilt University's BioVU DNA biobank showed significant associations (P < 0.05) with 9 loci, though no association was observed for the index SNPs reported in European- or Asian-ancestry populations. These results extend some of the recent GWAS findings to African Americans and may guide future efforts to identify causal variants for T2D.
0 Communities
7 Members
0 Resources
25 MeSH Terms
Genetic determinants of the ankle-brachial index: a meta-analysis of a cardiovascular candidate gene 50K SNP panel in the candidate gene association resource (CARe) consortium.
Wassel CL, Lamina C, Nambi V, Coassin S, Mukamal KJ, Ganesh SK, Jacobs DR, Franceschini N, Papanicolaou GJ, Gibson Q, Yanek LR, van der Harst P, Ferguson JF, Crawford DC, Waite LL, Allison MA, Criqui MH, McDermott MM, Mehra R, Cupples LA, Hwang SJ, Redline S, Kaplan RC, Heiss G, Rotter JI, Boerwinkle E, Taylor HA, Eraso LH, Haun M, Li M, Meisinger C, O'Connell JR, Shuldiner AR, Tybjærg-Hansen A, Frikke-Schmidt R, Kollerits B, Rantner B, Dieplinger B, Stadler M, Mueller T, Haltmayer M, Klein-Weigel P, Summerer M, Wichmann HE, Asselbergs FW, Navis G, Mateo Leach I, Brown-Gentry K, Goodloe R, Assimes TL, Becker DM, Cooke JP, Absher DM, Olin JW, Mitchell BD, Reilly MP, Mohler ER, North KE, Reiner AP, Kronenberg F, Murabito JM
(2012) Atherosclerosis 222: 138-47
MeSH Terms: Adult, African Americans, Aged, Ankle Brachial Index, Aryl Hydrocarbon Hydroxylases, Cytochrome P-450 CYP2B6, European Continental Ancestry Group, Female, Humans, Male, Middle Aged, Oxidoreductases, N-Demethylating, Peripheral Arterial Disease, Polymorphism, Single Nucleotide, Risk Factors, Transcription Factor 7-Like 2 Protein
Show Abstract · Added December 10, 2013
BACKGROUND - Candidate gene association studies for peripheral artery disease (PAD), including subclinical disease assessed with the ankle-brachial index (ABI), have been limited by the modest number of genes examined. We conducted a two stage meta-analysis of ∼50,000 SNPs across ∼2100 candidate genes to identify genetic variants for ABI.
METHODS AND RESULTS - We studied subjects of European ancestry from 8 studies (n=21,547, 55% women, mean age 44-73 years) and African American ancestry from 5 studies (n=7267, 60% women, mean age 41-73 years) involved in the candidate gene association resource (CARe) consortium. In each ethnic group, additive genetic models were used (with each additional copy of the minor allele corresponding to the given beta) to test each SNP for association with continuous ABI (excluding ABI>1.40) and PAD (defined as ABI<0.90) using linear or logistic regression with adjustment for known PAD risk factors and population stratification. We then conducted a fixed-effects inverse-variance weighted meta-analyses considering a p<2×10(-6) to denote statistical significance.
RESULTS - In the European ancestry discovery meta-analyses, rs2171209 in SYTL3 (β=-0.007, p=6.02×10(-7)) and rs290481 in TCF7L2 (β=-0.008, p=7.01×10(-7)) were significantly associated with ABI. None of the SNP associations for PAD were significant, though a SNP in CYP2B6 (p=4.99×10(-5)) was among the strongest associations. These 3 genes are linked to key PAD risk factors (lipoprotein(a), type 2 diabetes, and smoking behavior, respectively). We sought replication in 6 population-based and 3 clinical samples (n=15,440) for rs290481 and rs2171209. However, in the replication stage (rs2171209, p=0.75; rs290481, p=0.19) and in the combined discovery and replication analysis the SNP-ABI associations were no longer significant (rs2171209, p=1.14×10(-3); rs290481, p=8.88×10(-5)). In African Americans, none of the SNP associations for ABI or PAD achieved an experiment-wide level of significance.
CONCLUSIONS - Genetic determinants of ABI and PAD remain elusive. Follow-up of these preliminary findings may uncover important biology given the known gene-risk factor associations. New and more powerful approaches to PAD gene discovery are warranted.
Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study: common genetic variants in GCK and TCF7L2 are associated with fasting and postchallenge glucose levels in pregnancy and with the new consensus definition of gestational diabetes mellitus from the International Association of Diabetes and Pregnancy Study Groups.
Freathy RM, Hayes MG, Urbanek M, Lowe LP, Lee H, Ackerman C, Frayling TM, Cox NJ, Dunger DB, Dyer AR, Hattersley AT, Metzger BE, Lowe WL, HAPO Study Cooperative Research Group
(2010) Diabetes 59: 2682-9
MeSH Terms: Birth Weight, European Continental Ancestry Group, Female, Genetic Variation, Genotype, Germinal Center Kinases, Humans, Hyperglycemia, Infant, Newborn, Polymorphism, Single Nucleotide, Pregnancy, Pregnancy Complications, Pregnancy Outcome, Pregnancy in Diabetics, Protein-Serine-Threonine Kinases, TCF Transcription Factors, Transcription Factor 7-Like 2 Protein
Show Abstract · Added February 22, 2016
OBJECTIVE - Common genetic variants in GCK and TCF7L2 are associated with higher fasting glucose and type 2 diabetes in nonpregnant populations. However, their associations with glucose levels from oral glucose tolerance tests (OGTTs) in pregnancy have not been assessed in a large sample. We hypothesized that these variants are associated with quantitative measures of glycemia in pregnancy.
RESEARCH DESIGN AND METHODS - We analyzed the associations between variants rs1799884 (GCK) and rs7903146 (TCF7L2) and OGTT outcomes at 24-32 weeks' gestation in 3,811 mothers of European (U.K. and Australia) and 1,706 mothers of Asian (Thailand) ancestry from the HAPO cohort. We also tested associations with offspring birth anthropometrics.
RESULTS - The maternal GCK variant was associated with higher fasting glucose in Europeans (P = 0.001) and Thais (P < 0.0001), 1-h glucose in Europeans (P = 0.001), and 2-h glucose in Thais (P = 0.005). It was also associated with higher European offspring birth weight, fat mass, and skinfold thicknesses (P < 0.05). The TCF7L2 variant was associated with all three maternal glucose outcomes (P = 0.03, P < 0.0001, and P < 0.0001 for fasting and 1-h and 2-h glucose, respectively) in the Europeans but not in the Thais (P > 0.05). In both populations, both variants were associated with higher odds of gestational diabetes mellitus according to the new International Association of Diabetes and Pregnancy Study Groups recommendations (P = 0.001-0.08).
CONCLUSIONS - Maternal GCK and TCF7L2 variants are associated with glucose levels known to carry an increased risk of adverse pregnancy outcome in women without overt diabetes. Further studies will be important to determine the variance in maternal glucose explained by all known genetic variants.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Diabetes genes and prostate cancer in the Atherosclerosis Risk in Communities study.
Meyer TE, Boerwinkle E, Morrison AC, Volcik KA, Sanderson M, Coker AL, Pankow JS, Folsom AR
(2010) Cancer Epidemiol Biomarkers Prev 19: 558-65
MeSH Terms: Atherosclerosis, Calpain, Cohort Studies, Diabetes Mellitus, Type 2, Genetic Predisposition to Disease, Genome-Wide Association Study, Glucose Transporter Type 2, Humans, Ion Channels, Male, Middle Aged, Mitochondrial Proteins, Polymorphism, Single Nucleotide, Proportional Hazards Models, Prostatic Neoplasms, RNA-Binding Proteins, TCF Transcription Factors, Transcription Factor 7-Like 2 Protein, Uncoupling Protein 2
Show Abstract · Added March 11, 2014
There is a known inverse association between type 2 diabetes (T2D) and prostate cancer (PrCa) that is poorly understood. Genetic studies of the T2D-PrCa association may provide insight into the underlying mechanisms of this association. We evaluated associations in the Atherosclerosis Risk in Communities study between PrCa and nine T2D single nucleotide polymorphisms from genome-wide association studies of T2D (in CDKAL1, CDKN2A/B, FTO, HHEX, IGF2BP2, KCNJ11, PPARG, SLC30A8, and TCF7L2) and four T2D single nucleotide polymorphisms from pre-genome-wide association studies (in ADRB2, CAPN10, SLC2A2, and UCP2). From 1987 to 2000, there were 397 incident PrCa cases among 6,642 men ages 45 to 64 years at baseline. We used race-adjusted Cox proportional hazards models to estimate associations between PrCa and increasing number of T2D risk-raising alleles. PrCa was positively associated with the CAPN10 rs3792267 G allele [hazard ratio (HR) 1.20; 95% confidence interval (CI), 1.00-1.44] and inversely associated with the SLC2A2 rs5400 Thr110 allele (HR, 0.85; 95% CI, 0.72, 1.00), the UCP2 rs660339 Val55 allele (HR, 0.84; 95% CI, 0.73, 0.97) and the IGF2BP2 rs4402960 T allele (HR, 0.79; 95% CI, 0.61-1.02; blacks only). The TCF7L2 rs7903146 T allele was inversely associated with PrCa using a dominant genetic model (HR, 0.79; 95% CI, 0.65-0.97). Further knowledge of T2D gene-PrCa mechanisms may improve understanding of PrCa etiology.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Polyunsaturated fatty acids modulate the effect of TCF7L2 gene variants on postprandial lipemia.
Warodomwichit D, Arnett DK, Kabagambe EK, Tsai MY, Hixson JE, Straka RJ, Province M, An P, Lai CQ, Borecki I, Ordovas JM
(2009) J Nutr 139: 439-46
MeSH Terms: Adolescent, Adult, Aged, Aged, 80 and over, Diet, Dietary Fats, Unsaturated, Fatty Acids, Unsaturated, Female, Gene Expression Regulation, Genetic Variation, Humans, Hyperlipidemias, Male, Middle Aged, Polymorphism, Single Nucleotide, Postprandial Period, TCF Transcription Factors, Transcription Factor 7-Like 2 Protein, Young Adult
Show Abstract · Added April 24, 2015
The transcription factor 7-like 2 (TCF7L2) has been recently associated with diabetes risk, and it may exert its effect through metabolic syndrome (MetS)-related traits and be subjected to modification by environmental factors. We investigated the effect of single nucleotide polymorphisms (SNP), rs7903146 and rs12255372, within the TCF7L2 locus on postprandial lipemia and other MetS-related traits and their modulation by dietary fat. Data were collected from 1083 European Americans participating in the Genetics of Lipid Lowering Drugs and Diet Network Study. Carriers of the minor T allele at the C/T rs7903146 SNP had higher fasting plasma glucose (P = 0.012), lower homeostasis model assessment of beta cell function (P = 0.041), higher plasma VLDL (P = 0.035), and lower large LDL particle (P = 0.007) concentrations and higher risk of MetS (P = 0.011) than CC individuals. Moreover, we identified significant interactions between this SNP and PUFA intake modulating fasting VLDL particle concentrations (P = 0.016) and postprandial triglycerides (TG) (P = 0.028), chylomicrons (P = 0.025), total VLDL (P = 0.026), and large VLDL (P = 0.018) concentrations. Thus, only T allele carriers with a PUFA intake > or = 7.36% of energy had elevated fasting plasma VLDL concentrations and postprandial TG-rich lipoproteins. These variables did not differ in T allele carriers and noncarriers in the low-PUFA intake group. Moreover, these significant interactions were due exclusively to (n-6) PUFA intake. In summary, high (n-6) PUFA intakes (> or = 6.62% of energy intake) were associated with atherogenic dyslipidemia in carriers of the minor T allele at the TCF7L2 rs7903146 SNP and may predispose them to MetS, diabetes, and cardiovascular disease.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Myeloid translocation gene family members associate with T-cell factors (TCFs) and influence TCF-dependent transcription.
Moore AC, Amann JM, Williams CS, Tahinci E, Farmer TE, Martinez JA, Yang G, Luce KS, Lee E, Hiebert SW
(2008) Mol Cell Biol 28: 977-87
MeSH Terms: Animals, COS Cells, Chlorocebus aethiops, Cricetinae, DNA-Binding Proteins, Humans, Intestine, Small, K562 Cells, Mice, Mice, Knockout, Nuclear Proteins, Protein Binding, Proto-Oncogene Proteins, Proto-Oncogene Proteins c-myc, RUNX1 Translocation Partner 1 Protein, Repressor Proteins, TCF Transcription Factors, Transcription Factor 7-Like 2 Protein, Transcription Factors, Transcription, Genetic, Transfection, Xenopus Proteins, beta Catenin
Show Abstract · Added February 21, 2014
Canonical Wnt signaling is mediated by a molecular "switch" that regulates the transcriptional properties of the T-cell factor (TCF) family of DNA-binding proteins. Members of the myeloid translocation gene (MTG) family of transcriptional corepressors are frequently disrupted by chromosomal translocations in acute myeloid leukemia, whereas MTG16 may be inactivated in up to 40% of breast cancer and MTG8 is a candidate cancer gene in colorectal carcinoma. Genetic studies imply that this corepressor family may function in stem cells. Given that mice lacking Myeloid Translocation Gene Related-1 (Mtgr1) fail to maintain the secretory lineage in the small intestine, we surveyed transcription factors that might recruit Mtgr1 in intestinal stem cells or progenitor cells and found that MTG family members associate specifically with TCF4. Coexpression of beta-catenin disrupted the association between these corepressors and TCF4. Furthermore, when expressed in Xenopus embryos, MTG family members inhibited axis formation and impaired the ability of beta-catenin and XLef-1 to induce axis duplication, indicating that MTG family members act downstream of beta-catenin. Moreover, we found that c-Myc, a transcriptional target of the Wnt pathway, was overexpressed in the small intestines of mice lacking Mtgr1, thus linking inactivation of Mtgr1 to the activation of a potent oncogene.
0 Communities
2 Members
0 Resources
23 MeSH Terms
p73 isoforms can induce T-cell factor-dependent transcription in gastrointestinal cells.
Tomkova K, Belkhiri A, El-Rifai W, Zaika AI
(2004) Cancer Res 64: 6390-3
MeSH Terms: Adenocarcinoma, Apoptosis, Cell Line, Tumor, Cell Transformation, Neoplastic, Cytoskeletal Proteins, DNA-Binding Proteins, Esophageal Neoplasms, Gene Expression Regulation, Neoplastic, Genes, Tumor Suppressor, Humans, Nuclear Proteins, Protein Isoforms, RNA, Messenger, Stomach Neoplasms, TCF Transcription Factors, Trans-Activators, Transcription Factor 7-Like 2 Protein, Transcription Factors, Transcriptional Activation, Transfection, Tumor Protein p73, Tumor Suppressor Proteins, Up-Regulation, beta Catenin
Show Abstract · Added March 5, 2014
A new p53 family member, p73, and its isoform DeltaNp73 are increasingly recognized in cancer research as important players in tumorigenesis, as well as in chemotherapeutic drug sensitivity. Despite substantial structural similarities to p53, accumulating evidence suggests that p53 and p73 may play different roles in human tumorigenesis. In this study, we have investigated the role of p73 and DeltaNp73 in upper gastrointestinal tumorigenesis. Our results indicate that p73 and DeltaNp73 are frequently overexpressed in >60% of primary adenocarcinomas of the stomach and esophagus. We have demonstrated that this overexpression can lead to the suppression of p73 transcriptional and apoptotic activity in gastrointestinal cells. Moreover, it induces beta-catenin up-regulation and T-cell factor/lymphocyte enhancement factor-dependent transcription. Wild-type p53, but not mutant p53, can inhibit this effect. Our results demonstrate a novel mechanism for activation of beta-catenin in gastrointestinal tumors and support the concept that overexpression of p73 isoforms can play an important role in tumorigenesis.
0 Communities
2 Members
0 Resources
24 MeSH Terms