Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 54

Publication Record

Connections

Diabetes treatment intensification and associated changes in HbA1c and body mass index: a cohort study.
Roumie CL, Greevy RA, Grijalva CG, Hung AM, Liu X, Griffin MR
(2016) BMC Endocr Disord 16: 32
MeSH Terms: Body Mass Index, Cohort Studies, Diabetes Mellitus, Type 2, Glycated Hemoglobin A, Humans, Hypoglycemic Agents, Insulin, Metformin, Practice Guidelines as Topic, Retrospective Studies, Sulfonylurea Compounds, Thiazolidinediones, Treatment Outcome
Show Abstract · Added July 27, 2018
BACKGROUND - To describe common type 2 diabetes treatment intensification regimens, patients' characteristics and changes in glycated hemoglobin (HbA1c) and body mass index (BMI).
METHODS - We constructed a national retrospective cohort of veterans initially treated for diabetes with either metformin or sulfonylurea from 2001 through 2008, using Veterans Health Administration (VHA) and Medicare data. Patients were followed through September, 2011 to identify common diabetes treatment intensification regimens. We evaluated changes in HbA1c and BMI post-intensification for metformin-based regimens.
RESULTS - We identified 323,857 veterans who initiated diabetes treatment. Of these, 55 % initiated metformin, 43 % sulfonylurea and 2 % other regimens. Fifty percent (N = 89,057) of metformin initiators remained on metformin monotherapy over a median follow-up 58 months (interquartile range [IQR] 35, 74). Among 80,725 patients who intensified metformin monotherapy, the four most common regimens were addition of sulfonylurea (79 %), thiazolidinedione [TZD] (6 %), or insulin (8 %), and switch to insulin monotherapy (2 %). Across these regimens, median HbA1c values declined from a range of 7.0-7.8 % (53-62 mmol/mol) at intensification to 6.6-7.0 % (49-53 mmol/mol) at 1 year, and remained stable up to 3 years afterwards. Median BMI ranged between 30.5 and 32 kg/m(2) at intensification and increased very modestly in those who intensified with oral regimens, but 1-2 kg/m(2) over 3 years among those who intensified with insulin-based regimens.
CONCLUSIONS - By 1 year post-intensification of metformin monotherapy, HbA1c declined in all four common intensification regimens, and remained close to 7 % in subsequent follow-up. BMI increased substantially for those on insulin-based regimens.
0 Communities
1 Members
0 Resources
MeSH Terms
Adipose tissue natriuretic peptide receptor expression is related to insulin sensitivity in obesity and diabetes.
Kovacova Z, Tharp WG, Liu D, Wei W, Xie H, Collins S, Pratley RE
(2016) Obesity (Silver Spring) 24: 820-8
MeSH Terms: Adult, Cross-Sectional Studies, Diabetes Mellitus, Type 2, Female, Humans, Hypoglycemic Agents, Insulin Resistance, Male, Middle Aged, Obesity, Pioglitazone, Receptors, Atrial Natriuretic Factor, Thiazolidinediones
Show Abstract · Added July 22, 2020
OBJECTIVE - Cardiac natriuretic peptides (NPs) bind to two receptors (NPRA-mediator of signaling; NPRC-clearance receptor) whose ratio, NPRR (NPRA/NPRC), determines the NP bioactivity. This study investigated the relationship of NP receptor gene expression in adipose tissue and muscle with obesity and glucose intolerance. Prospectively, the study also assessed whether changes in NP receptor expression and thermogenic gene markers accompanied improvements of insulin sensitivity.
METHODS - A cross-sectional study of subjects with a wide range of BMI and glucose tolerance (n = 50) was conducted, as well as a randomized 12-week trial of subjects with type 2 diabetes mellitus (T2DM) treated with pioglitazone (n = 9) or placebo (n = 10).
RESULTS - NPRR mRNA was significantly lower in adipose tissue of subjects with obesity when compared with lean subjects (P ≤ 0.001). NPRR decreased with progression from normal glucose tolerance to T2DM (P < 0.01) independently of obesity. Treatment of subjects with T2DM with pioglitazone increased NPRR in adipose tissue (P ≤ 0.01) in conjunction with improvements in insulin sensitivity and increases of the thermogenic markers PPARγ coactivator-1α and uncoupling protein 1 (P ≤ 0.01).
CONCLUSIONS - Decreased adipose tissue NPRR was associated with obesity, glucose intolerance, and insulin resistance. This relationship was not observed for skeletal muscle NPRR. Pharmacological improvement of insulin sensitivity in subjects with T2DM was tied to improvement in NPRR and increased expression of genes involved in thermogenic processes.
© 2016 The Authors Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).
0 Communities
1 Members
0 Resources
MeSH Terms
Atherosclerosis following renal injury is ameliorated by pioglitazone and losartan via macrophage phenotype.
Yamamoto S, Zhong J, Yancey PG, Zuo Y, Linton MF, Fazio S, Yang H, Narita I, Kon V
(2015) Atherosclerosis 242: 56-64
MeSH Terms: Angiotensin Receptor Antagonists, Animals, Aortic Diseases, Apolipoproteins E, Apoptosis, Atherosclerosis, Cell Line, Cytokines, Disease Models, Animal, Drug Evaluation, Preclinical, Drug Synergism, Drug Therapy, Combination, Female, Hyperlipidemias, Inflammation, Losartan, Macrophages, Mice, Mice, Inbred C57BL, Mice, Knockout, Nephrectomy, PPAR gamma, Phenotype, Pioglitazone, Renal Insufficiency, Chronic, Renin-Angiotensin System, Thiazolidinediones
Show Abstract · Added April 10, 2018
OBJECTIVE - Chronic kidney disease (CKD) amplifies atherosclerosis, which involves renin-angiotensin system (RAS) regulation of macrophages. RAS influences peroxisome proliferator-activated receptor-γ (PPARγ), a modulator of atherogenic functions of macrophages, however, little is known about its effects in CKD. We examined the impact of combined therapy with a PPARγ agonist and angiotensin receptor blocker on atherogenesis in a murine uninephrectomy model.
METHODS - Apolipoprotein E knockout mice underwent uninephrectomy (UNx) and treatment with pioglitazone (UNx + Pio), losartan (UNx + Los), or both (UNx + Pio/Los) for 10 weeks. Extent and characteristics of atherosclerotic lesions and macrophage phenotypes were assessed; RAW264.7 and primary peritoneal mouse cells were used to examine pioglitazone and losartan effects on macrophage phenotype and inflammatory response.
RESULTS - UNx significantly increased atherosclerosis. Pioglitazone and losartan each significantly reduced the atherosclerotic burden by 29.6% and 33.5%, respectively; although the benefit was dramatically augmented by combination treatment which lessened atherosclerosis by 55.7%. Assessment of plaques revealed significantly greater macrophage area in UNx + Pio/Los (80.7 ± 11.4% vs. 50.3 ± 4.2% in UNx + Pio and 57.2 ± 6.5% in UNx + Los) with more apoptotic cells. The expanded macrophage-rich lesions of UNx + Pio/Los had more alternatively activated, Ym-1 and arginine 1-positive M2 phenotypes (Ym-1: 33.6 ± 8.2%, p < 0.05 vs. 12.0 ± 1.1% in UNx; arginase 1: 27.8 ± 0.9%, p < 0.05 vs. 11.8 ± 1.3% in UNx). In vitro, pioglitazone alone and together with losartan was more effective than losartan alone in dampening lipopolysaccharide-induced cytokine production, suppressing M1 phenotypic change while enhancing M2 phenotypic change.
CONCLUSION - Combination of pioglitazone and losartan is more effective in reducing renal injury-induced atherosclerosis than either treatment alone. This benefit reflects mitigation in macrophage cytokine production, enhanced apoptosis, and a shift toward an anti-inflammatory phenotype.
Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
27 MeSH Terms
PPARγ activation attenuates opioid consumption and modulates mesolimbic dopamine transmission.
de Guglielmo G, Melis M, De Luca MA, Kallupi M, Li HW, Niswender K, Giordano A, Senzacqua M, Somaini L, Cippitelli A, Gaitanaris G, Demopulos G, Damadzic R, Tapocik J, Heilig M, Ciccocioppo R
(2015) Neuropsychopharmacology 40: 927-37
MeSH Terms: Anilides, Animals, Conditioning, Operant, Dopamine, Dopaminergic Neurons, Heroin, Hypoglycemic Agents, Male, Mice, Transgenic, Morphine, Narcotics, Nucleus Accumbens, PPAR gamma, Pioglitazone, Prefrontal Cortex, Rats, Rats, Wistar, Self Administration, Synaptic Transmission, Thiazolidinediones, Time Factors, Ventral Tegmental Area, gamma-Aminobutyric Acid
Show Abstract · Added February 19, 2015
PPARγ is one of the three isoforms identified for the peroxisome proliferator-activated receptors (PPARs) and is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. PPARγ has been long studied for its role in adipogenesis and glucose metabolism, but the discovery of the localization in ventral tegmental area (VTA) neurons opens new vistas for a potential role in the regulation of reward processing and motivated behavior in drug addiction. Here, we demonstrate that activation of PPARγ by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. These effects are associated with a marked reduction of heroin-induced increase in phosphorylation of DARPP-32 protein in the nucleus accumbens (NAc) and with a marked and selective reduction of acute heroin-induced elevation of extracellular dopamine (DA) levels in the NAc shell, as measured by in vivo microdialysis. Through ex vivo electrophysiology in acute midbrain slices, we also show that stimulation of PPARγ attenuates opioid-induced excitation of VTA DA neurons via reduction of presynaptic GABA release from the rostromedial tegmental nucleus (RMTg). Consistent with this finding, site-specific microinjection of pioglitazone into the RMTg but not into the VTA reduced heroin taking. Our data illustrate that activation of PPARγ may represent a new pharmacotherapeutic option for the treatment of opioid addiction.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Retinaldehyde dehydrogenase 1 deficiency inhibits PPARγ-mediated bone loss and marrow adiposity.
Nallamshetty S, Le PT, Wang H, Issacsohn MJ, Reeder DJ, Rhee EJ, Kiefer FW, Brown JD, Rosen CJ, Plutzky J
(2014) Bone 67: 281-91
MeSH Terms: Absorptiometry, Photon, Adiposity, Aldehyde Dehydrogenase, Aldehyde Dehydrogenase 1 Family, Animals, Cells, Cultured, Female, Magnetic Resonance Imaging, Mice, Mice, Knockout, Osteoblasts, Osteogenesis, PPAR gamma, Retinal Dehydrogenase, Reverse Transcriptase Polymerase Chain Reaction, Rosiglitazone, Thiazolidinediones, X-Ray Microtomography
Show Abstract · Added September 6, 2016
PPARγ, a ligand-activated nuclear receptor, regulates fundamental aspects of bone homeostasis and skeletal remodeling. PPARγ-activating anti-diabetic thiazolidinediones in clinical use promote marrow adiposity, bone loss, and skeletal fractures. As such, delineating novel regulatory pathways that modulate the action of PPARγ, and its obligate heterodimeric partner RXR, may have important implications for our understanding and treatment of disorders of low bone mineral density. We present data here establishing retinaldehyde dehydrogenase 1 (Aldh1a1) and its substrate retinaldehyde (Rald) as novel determinants of PPARγ-RXR actions in the skeleton. When compared to wild type (WT) controls, retinaldehyde dehydrogenase-deficient (Aldh1a1(-/-)) mice were protected against bone loss and marrow adiposity induced by either the thiazolidinedione rosiglitazone or a high fat diet, both of which potently activate the PPARγ-RXR complex. Consistent with these results, Rald, which accumulates in vivo in Aldh1a1(-/-) mice, protects against rosiglitazone-mediated inhibition of osteoblastogenesis in vitro. In addition, Rald potently inhibits in vitro adipogenesis and osteoclastogenesis in WT mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) respectively. Primary Aldh1a1(-/-) HSCs also demonstrate impaired osteoclastogenesis in vitro compared to WT controls. Collectively, these findings identify Rald and retinoid metabolism through Aldh1a1 as important novel modulators of PPARγ-RXR transactivation in the marrow niche.
Copyright © 2014 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Reversing vascular dysfunction in rheumatoid arthritis: improved augmentation index but not endothelial function with peroxisome proliferator-activated receptor γ agonist therapy.
Ormseth MJ, Oeser AM, Cunningham A, Bian A, Shintani A, Solus J, Tanner SB, Stein CM
(2014) Arthritis Rheumatol 66: 2331-8
MeSH Terms: Adult, Aged, Antirheumatic Agents, Arthritis, Rheumatoid, Cross-Over Studies, Double-Blind Method, Endothelium, Vascular, Female, Humans, Hypoglycemic Agents, Insulin Resistance, Male, Middle Aged, PPAR gamma, Pioglitazone, Thiazolidinediones, Treatment Outcome
Show Abstract · Added January 20, 2015
OBJECTIVE - To examine the hypothesis that improving insulin sensitivity improves vascular function in rheumatoid arthritis (RA).
METHODS - We performed a 20-week, single center, randomized, double-blind, placebo-controlled crossover study. Patients with RA (n = 34) with moderate disease activity who were receiving stable disease-modifying antirheumatic drug therapy were randomized to drug sequence, receiving either pioglitazone 45 mg/day or matching placebo for 8 weeks, followed by a 4-week washout period and the alternative treatment for 8 weeks. We measured changes in vascular stiffness (augmentation index and aortic pulse wave velocity [PWV]), endothelial function (reactive hyperemia index), and blood pressure. High-sensitivity C-reactive protein levels and the homeostatic model assessment of insulin resistance were also measured. The treatment effect of pioglitazone on outcomes was analyzed using linear mixed-effects models.
RESULTS - Pioglitazone treatment resulted in a change in augmentation index of -4.7% units (95% confidence interval [95% CI] -7.9, -1.5) (P = 0.004) and in diastolic blood pressure of -3.0 mm Hg (95% CI -5.7, -0.2) (P = 0.03), but did not significantly change aortic PWV (P = 0.33) or reactive hyperemia index (P = 0.46). The improvements in augmentation index and diastolic blood pressure were not mediated by the effect of pioglitazone on insulin resistance or inflammation.
CONCLUSION - Our findings indicate that pioglitazone improves some indices of vascular function, including augmentation index and diastolic blood pressure, in patients with RA. This is not mediated by improved insulin sensitivity.
Copyright © 2014 by the American College of Rheumatology.
0 Communities
1 Members
0 Resources
17 MeSH Terms
PPAR-γ/IL-10 axis inhibits MyD88 expression and ameliorates murine polymicrobial sepsis.
Ferreira AE, Sisti F, Sônego F, Wang S, Filgueiras LR, Brandt S, Serezani AP, Du H, Cunha FQ, Alves-Filho JC, Serezani CH
(2014) J Immunol 192: 2357-65
MeSH Terms: Animals, Disease Models, Animal, Female, Gene Expression Regulation, Hypoglycemic Agents, Interleukin-10, Mice, Myeloid Differentiation Factor 88, PPAR gamma, Receptors, Interleukin-10, STAT1 Transcription Factor, Sepsis, Thiazolidinediones
Show Abstract · Added May 4, 2017
Polymicrobial sepsis induces organ failure and is accompanied by overwhelming inflammatory response and impairment of microbial killing. Peroxisome proliferator-activated receptor (PPAR)-γ is a nuclear receptor with pleiotropic effects on lipid metabolism, inflammation, and cell proliferation. The insulin-sensitizing drugs thiazolidinediones (TZDs) are specific PPAR-γ agonists. TZDs exert anti-inflammatory actions in different disease models, including polymicrobial sepsis. The TZD pioglitazone, which has been approved by the U.S. Food and Drug Administration, improves sepsis outcome; however, the molecular programs that mediate its effect have not been determined. In a murine model of sepsis, we now show that pioglitazone treatment improves microbial clearance and enhances neutrophil recruitment to the site of infection. We also observed reduced proinflammatory cytokine production and high IL-10 levels in pioglitazone-treated mice. These effects were associated with a decrease in STAT-1-dependent expression of MyD88 in vivo and in vitro. IL-10R blockage abolished PPAR-γ-mediated inhibition of MyD88 expression. These data demonstrate that the primary mechanism by which pioglitazone protects against polymicrobial sepsis is through the impairment of MyD88 responses. This appears to represent a novel regulatory program. In this regard, pioglitazone provides advantages as a therapeutic tool, because it improves different aspects of host defense during sepsis, ultimately enhancing survival.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Resistance training and pioglitazone lead to improvements in muscle power during voluntary weight loss in older adults.
Marsh AP, Shea MK, Vance Locke RM, Miller ME, Isom S, Miller GD, Nicklas BJ, Lyles MF, Carr JJ, Kritchevsky SB
(2013) J Gerontol A Biol Sci Med Sci 68: 828-36
MeSH Terms: Aged, Aging, Body Composition, Body Mass Index, Female, Follow-Up Studies, Humans, Hypoglycemic Agents, Male, Muscle Strength, Obesity, Overweight, Pioglitazone, Resistance Training, Single-Blind Method, Thiazolidinediones, Treatment Outcome, Weight Loss
Show Abstract · Added February 15, 2014
BACKGROUND - The prevalence of obesity in older adults is increasing but concerns exist about the effect of weight loss on muscle function. Demonstrating that muscle strength and power are not adversely affected during "intentional" weight loss in older adults is important given the wide-ranging negative health effects of excess adiposity.
METHODS - Participants (N = 88; age = 70.6 ± 3.6 years; body mass index = 32.8 ± 4.5 kg/m(2)) were randomly assigned to one of four intervention groups: pioglitazone or placebo and resistance training (RT) or no RT, while undergoing intentional weight loss via a hypocaloric diet. Outcomes were leg press power and isometric knee extensor strength. Analysis of covariance, controlling for baseline values, compared follow-up means of power and strength according to randomized groups.
RESULTS - Participants lost an average of 6.6% of initial body mass, and significant declines were observed in fat mass, lean body mass, and appendicular lean body mass. Compared with women not randomized to RT, women randomized to RT had significant improvements in leg press power (p < .001) but not in knee extensor strength (p = 0.12). No significant differences between groups in change in power or strength from baseline were detected in men (both p > .25). A significant pioglitazone-by-RT interaction for leg press power was detected in women (p = .006) but not in men (p = .88).
CONCLUSIONS - In older overweight and obese adults, a hypocaloric weight loss intervention led to significant declines in lean body mass and appendicular lean body mass. However, in women assigned to RT, leg power significantly improved following the intervention, and muscle strength or power was not adversely effected in the other groups. Pioglitazone potentiated the effect of RT on muscle power in women but not in men; mechanisms underlying this sex effect remain to be determined.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Evolution of exenatide as a diabetes therapeutic.
Bhavsar S, Mudaliar S, Cherrington A
(2013) Curr Diabetes Rev 9: 161-93
MeSH Terms: Animals, Blood Glucose, Cardiovascular Diseases, Diabetes Mellitus, Type 2, Diabetic Angiopathies, Drug Therapy, Combination, Exenatide, Glucagon-Like Peptide 1, Glycated Hemoglobin A, Humans, Hypoglycemic Agents, Metformin, Mice, Mice, Knockout, Models, Animal, Nausea, Peptides, Sulfonylurea Compounds, Thiazolidinediones, Venoms, Weight Loss
Show Abstract · Added February 13, 2015
Type 2 diabetes (T2DM) is a disease of epidemic proportion associated with significant morbidity and excess mortality. Optimal glucose control reduces the risk of microvascular and possibly macrovascular complications due to diabetes. However, glycemic control is rarely optimal and several therapeutic interventions for the treatment of diabetes cause hypoglycemia and weight gain; some may exacerbate cardiovascular risk. Exenatide (synthetic exendin-4) is a glucagon- like peptide-1 receptor (GLP-1R) agonist developed as a first-in-class diabetes therapy. This review presents an overview of the evolution of exenatide as a T2DM treatment, beginning with the seminal preclinical discoveries and continuing through to clinical pharmacology investigations and phase 3 clinical trials. In patients with T2DM, exenatide enhanced glucose-dependent insulin secretion, suppressed inappropriately elevated glucagon secretion, slowed gastric emptying, and enhanced satiety. In controlled phase 3 clinical trials ranging from 12 to 52 weeks, 10-mcg exenatide twice daily (ExBID) reduced mean HbA1c by -0.8% to -1.7% as monotherapy or in combination with metformin (MET), sulfonylureas (SFU), and/or thiazolidinediones (TZD); with mean weight losses of -1.2 kg to -8.0 kg. In controlled phase 3 trials ranging from 24 to 30 weeks, a 2-mg once-weekly exenatide formulation (ExQW) reduced mean HbA1c by -1.3% to -1.9%, with mean weight reductions of -2.3 to -3.7 kg. Exenatide was generally well-tolerated. The most common side effects were gastrointestinal in nature, mild, and transient. Nausea was the most prevalent adverse event. The incidence of hypoglycemia was generally low. By building upon early observations exenatide was successfully developed into an effective diabetes therapy.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Mixing of the old with the new: nanoparticle-mediated pioglitazone delivery to enhance therapeutic neovascularization.
Sheng CC, Hong CC
(2012) Arterioscler Thromb Vasc Biol 32: 2337-8
MeSH Terms: Animals, Hindlimb, Humans, Ischemia, Nanoparticles, Neovascularization, Physiologic, PPAR gamma, Pioglitazone, Thiazolidinediones
Added September 20, 2013
1 Communities
2 Members
0 Resources
9 MeSH Terms