Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 24

Publication Record


Osteopontin and iCD8α Cells Promote Intestinal Intraepithelial Lymphocyte Homeostasis.
Nazmi A, Greer MJ, Hoek KL, Piazuelo MB, Weitkamp JH, Olivares-Villagómez D
(2020) J Immunol 204: 1968-1981
MeSH Terms: Animals, CD4-Positive T-Lymphocytes, CD8-Positive T-Lymphocytes, Epithelium, Female, Homeostasis, Humans, Hyaluronan Receptors, Intestines, Intraepithelial Lymphocytes, Killer Cells, Natural, Male, Mice, Mice, Inbred C57BL, Osteopontin, Receptors, Antigen, T-Cell, gamma-delta, Th17 Cells
Show Abstract · Added February 28, 2020
Intestinal intraepithelial lymphocytes (IEL) comprise a diverse population of cells residing in the epithelium at the interface between the intestinal lumen and the sterile environment of the lamina propria. Because of this anatomical location, IEL are considered critical components of intestinal immune responses. Indeed, IEL are involved in many different immunological processes, ranging from pathogen control to tissue stability. However, despite their critical importance in mucosal immune responses, very little is known about the homeostasis of different IEL subpopulations. The phosphoprotein osteopontin is important for critical physiological processes, including cellular immune responses, such as survival of Th17 cells and homeostasis of NK cells among others. Because of its impact in the immune system, we investigated the role of osteopontin in the homeostasis of IEL. In this study, we report that mice deficient in the expression of osteopontin exhibit reduced numbers of the IEL subpopulations TCRγδ, TCRβCD4, TCRβCD4CD8α, and TCRβCD8αα cells in comparison with wild-type mice. For some IEL subpopulations, the decrease in cell numbers could be attributed to apoptosis and reduced cell division. Moreover, we show in vitro that exogenous osteopontin stimulates the survival of murine IEL subpopulations and unfractionated IEL derived from human intestines, an effect mediated by CD44, a known osteopontin receptor. We also show that iCD8α IEL but not TCRγδ IEL, TCRβ IEL, or intestinal epithelial cells, can promote survival of different IEL populations via osteopontin, indicating an important role for iCD8α cells in the homeostasis of IEL.
Copyright © 2020 by The American Association of Immunologists, Inc.
1 Communities
0 Members
0 Resources
17 MeSH Terms
Biological Effects of IL-26 on T Cell-Mediated Skin Inflammation, Including Psoriasis.
Itoh T, Hatano R, Komiya E, Otsuka H, Narita Y, Aune TM, Dang NH, Matsuoka S, Naito H, Tominaga M, Takamori K, Morimoto C, Ohnuma K
(2019) J Invest Dermatol 139: 878-889
MeSH Terms: Animals, Cell Proliferation, Cells, Cultured, Dermatitis, Disease Models, Animal, Female, Gene Expression Regulation, Humans, Interleukins, Keratinocytes, Mice, Mice, Inbred BALB C, Mice, Transgenic, Psoriasis, RNA, Signal Transduction, Skin, Th17 Cells
Show Abstract · Added July 17, 2019
Psoriasis is a chronic inflammatory skin disease characterized mainly by epidermal hyperplasia, scaling, and erythema; T helper 17 cells have a role in its pathogenesis. Although IL-26, known as a T helper 17 cytokine, is upregulated in psoriatic skin lesions, its precise role is unclear. We investigated the role of IL-26 in the imiquimod-induced psoriasis-like murine model using human IL-26 transgenic mice. Erythema symptoms induced by daily applications of imiquimod increased dramatically in human IL-26 transgenic mice compared with controls. Vascularization and immune cell infiltration were prominent in skin lesions of human IL-26 transgenic mice. Levels of fibroblast growth factor (FGF) 1, FGF2, and FGF7 were significantly upregulated in the skin lesions of imiquimod-treated human IL-26 transgenic mice and psoriasis patients. In vitro analysis demonstrated that FGF1, FGF2, and FGF7 levels were elevated in human keratinocytes and vascular endothelial cells following IL-26 stimulation. Furthermore, IL-26 acted directly on vascular endothelial cells, promoting proliferation and tube formation, possibly through protein kinase B, extracellular signal-regulated kinase, and NF-κB pathways. Moreover, similar effects of IL-26 were observed in the murine contact hypersensitivity model, indicating that these effects are not restricted to psoriasis. Altogether, our data indicate that IL-26 may be a promising therapeutic target in T cell-mediated skin inflammation, including psoriasis.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
1 Communities
0 Members
0 Resources
18 MeSH Terms
Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism.
Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC, Maseda D, Liberti MV, Paz K, Kishton RJ, Johnson ME, de Cubas AA, Wu P, Li G, Zhang Y, Newcomb DC, Wells AD, Restifo NP, Rathmell WK, Locasale JW, Davila ML, Blazar BR, Rathmell JC
(2018) Cell 175: 1780-1795.e19
MeSH Terms: Animals, CD8-Positive T-Lymphocytes, Cell Differentiation, Glutaminase, Lymphocyte Activation, Male, Mice, Mice, Transgenic, Th1 Cells, Th17 Cells
Show Abstract · Added October 30, 2019
Activated T cells differentiate into functional subsets with distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to support the tricarboxylic acid cycle and redox and epigenetic reactions. Here, we identify a key role for GLS in T cell activation and specification. Though GLS deficiency diminished initial T cell activation and proliferation and impaired differentiation of Th17 cells, loss of GLS also increased Tbet to promote differentiation and effector function of CD4 Th1 and CD8 CTL cells. This was associated with altered chromatin accessibility and gene expression, including decreased PIK3IP1 in Th1 cells that sensitized to IL-2-mediated mTORC1 signaling. In vivo, GLS null T cells failed to drive Th17-inflammatory diseases, and Th1 cells had initially elevated function but exhausted over time. Transient GLS inhibition, however, led to increased Th1 and CTL T cell numbers. Glutamine metabolism thus has distinct roles to promote Th17 but constrain Th1 and CTL effector cell differentiation.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
MeSH Terms
PD-1 up-regulation on CD4 T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production.
Celada LJ, Kropski JA, Herazo-Maya JD, Luo W, Creecy A, Abad AT, Chioma OS, Lee G, Hassell NE, Shaginurova GI, Wang Y, Johnson JE, Kerrigan A, Mason WR, Baughman RP, Ayers GD, Bernard GR, Culver DA, Montgomery CG, Maher TM, Molyneaux PL, Noth I, Mutsaers SE, Prele CM, Peebles RS, Newcomb DC, Kaminski N, Blackwell TS, Van Kaer L, Drake WP
(2018) Sci Transl Med 10:
MeSH Terms: Adult, Aged, Animals, Bleomycin, CD4-Positive T-Lymphocytes, Cell Proliferation, Collagen Type I, Disease Models, Animal, Female, Fibroblasts, Gene Expression Regulation, Humans, Idiopathic Pulmonary Fibrosis, Interleukin-17, Male, Mice, Middle Aged, Programmed Cell Death 1 Receptor, RNA, Messenger, STAT3 Transcription Factor, Sarcoidosis, Th17 Cells, Transforming Growth Factor beta1, Up-Regulation
Show Abstract · Added March 26, 2019
Pulmonary fibrosis is a progressive inflammatory disease with high mortality and limited therapeutic options. Previous genetic and immunologic investigations suggest common intersections between idiopathic pulmonary fibrosis (IPF), sarcoidosis, and murine models of pulmonary fibrosis. To identify immune responses that precede collagen deposition, we conducted molecular, immunohistochemical, and flow cytometric analysis of human and murine specimens. Immunohistochemistry revealed programmed cell death-1 (PD-1) up-regulation on IPF lymphocytes. PD-1CD4 T cells with reduced proliferative capacity and increased transforming growth factor-β (TGF-β)/interleukin-17A (IL-17A) expression were detected in IPF, sarcoidosis, and bleomycin CD4 T cells. PD-1 T helper 17 cells are the predominant CD4 T cell subset expressing TGF-β. Coculture of PD-1CD4 T cells with human lung fibroblasts induced collagen-1 production. Strikingly, ex vivo PD-1 pathway blockade resulted in reductions in TGF-β and IL-17A expression from CD4 T cells, with concomitant declines in collagen-1 production from fibroblasts. Molecular analysis demonstrated PD-1 regulation of the transcription factor STAT3 (signal transducer and activator of transcription 3). Chemical blockade of STAT3, using the inhibitor STATTIC, inhibited collagen-1 production. Both bleomycin administration to PD-1 null mice or use of antibody against programmed cell death ligand 1 (PD-L1) demonstrated significantly reduced fibrosis compared to controls. This work identifies a critical, previously unrecognized role for PD-1CD4 T cells in pulmonary fibrosis, supporting the use of readily available therapeutics that directly address interstitial lung disease pathophysiology.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
24 MeSH Terms
mPGES1-Dependent Prostaglandin E (PGE) Controls Antigen-Specific Th17 and Th1 Responses by Regulating T Autocrine and Paracrine PGE Production.
Maseda D, Johnson EM, Nyhoff LE, Baron B, Kojima F, Wilhelm AJ, Ward MR, Woodward JG, Brand DD, Crofford LJ
(2018) J Immunol 200: 725-736
MeSH Terms: Animals, Autocrine Communication, Dinoprostone, Epitopes, T-Lymphocyte, Gene Expression Regulation, Immunization, Immunomodulation, Lymphocyte Activation, Mice, Paracrine Communication, Phenotype, Prostaglandin-E Synthases, Receptors, Prostaglandin E, EP2 Subtype, Receptors, Prostaglandin E, EP4 Subtype, Th1 Cells, Th17 Cells
Show Abstract · Added March 25, 2020
The integration of inflammatory signals is paramount in controlling the intensity and duration of immune responses. Eicosanoids, particularly PGE, are critical molecules in the initiation and resolution of inflammation and in the transition from innate to acquired immune responses. Microsomal PGE synthase 1 (mPGES1) is an integral membrane enzyme whose regulated expression controls PGE levels and is highly expressed at sites of inflammation. PGE is also associated with modulation of autoimmunity through altering the IL-23/IL-17 axis and regulatory T cell (Treg) development. During a type II collagen-CFA immunization response, lack of mPGES1 impaired the numbers of CD4 regulatory (Treg) and Th17 cells in the draining lymph nodes. Ag-experienced mPGES1 CD4 cells showed impaired IL-17A, IFN-γ, and IL-6 production when rechallenged ex vivo with their cognate Ag compared with their wild-type counterparts. Additionally, production of PGE by cocultured APCs synergized with that of Ag-experienced CD4 T cells, with mPGES1 competence in the APC compartment enhancing CD4 IL-17A and IFN-γ responses. However, in contrast with CD4 cells that were Ag primed in vivo, exogenous PGE inhibited proliferation and skewed IL-17A to IFN-γ production under Th17 polarization of naive T cells in vitro. We conclude that mPGES1 is necessary in vivo to mount optimal Treg and Th17 responses during an Ag-driven primary immune response. Furthermore, we uncover a coordination of autocrine and paracrine mPGES1-driven PGE production that impacts effector T cell IL-17A and IFN-γ responses.
Copyright © 2018 by The American Association of Immunologists, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Oxidized Low-Density Lipoprotein Immune Complex Priming of the Nlrp3 Inflammasome Involves TLR and FcγR Cooperation and Is Dependent on CARD9.
Rhoads JP, Lukens JR, Wilhelm AJ, Moore JL, Mendez-Fernandez Y, Kanneganti TD, Major AS
(2017) J Immunol 198: 2105-2114
MeSH Terms: Animals, Antibodies, Antigen-Antibody Complex, CARD Signaling Adaptor Proteins, Cells, Cultured, Cytokines, Dendritic Cells, Inflammasomes, Inflammation Mediators, Lipoproteins, LDL, Macrophages, Mice, Mice, Inbred C57BL, NLR Family, Pyrin Domain-Containing 3 Protein, Receptor Cross-Talk, Receptors, IgG, Signal Transduction, Th17 Cells, Toll-Like Receptors
Show Abstract · Added March 30, 2020
Oxidized low-density lipoprotein (oxLDL) is known to activate inflammatory responses in a variety of cells, especially macrophages and dendritic cells. Interestingly, much of the oxLDL in circulation is complexed to Abs, and these resulting immune complexes (ICs) are a prominent feature of chronic inflammatory disease, such as atherosclerosis, type-2 diabetes, systemic lupus erythematosus, and rheumatoid arthritis. Levels of oxLDL ICs often correlate with disease severity, and studies demonstrated that oxLDL ICs elicit potent inflammatory responses in macrophages. In this article, we show that bone marrow-derived dendritic cells (BMDCs) incubated with oxLDL ICs for 24 h secrete significantly more IL-1β compared with BMDCs treated with free oxLDL, whereas there was no difference in levels of TNF-α or IL-6. Treatment of BMDCs with oxLDL ICs increased expression of inflammasome-related genes , , and , and pretreatment with a caspase 1 inhibitor decreased IL-1β secretion in response to oxLDL ICs. This inflammasome priming was due to oxLDL IC signaling via multiple receptors, because inhibition of CD36, TLR4, and FcγR significantly decreased IL-1β secretion in response to oxLDL ICs. Signaling through these receptors converged on the adaptor protein CARD9, a component of the CARD9-Bcl10-MALT1 signalosome complex involved in NF-κB translocation. Finally, oxLDL IC-mediated IL-1β production resulted in increased Th17 polarization and cytokine secretion. Collectively, these data demonstrate that oxLDL ICs induce inflammasome activation through a separate and more robust mechanism than oxLDL alone and that these ICs may be immunomodulatory in chronic disease and not just biomarkers of severity.
Copyright © 2017 by The American Association of Immunologists, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection.
Hardbower DM, Asim M, Murray-Stewart T, Casero RA, Verriere T, Lewis ND, Chaturvedi R, Piazuelo MB, Wilson KT
(2016) Amino Acids 48: 2375-88
MeSH Terms: Animals, Arginase, Biogenic Polyamines, Helicobacter Infections, Helicobacter pylori, Immune Evasion, Macrophage Activation, Macrophages, Mice, Mice, Knockout, Nitric Oxide Synthase Type II, Stomach, Th1 Cells, Th17 Cells
Show Abstract · Added April 22, 2016
We reported that arginase 2 (ARG2) deletion results in increased gastritis and decreased bacterial burden during Helicobacter pylori infection in mice. Our studies implicated a potential role for inducible nitric oxide (NO) synthase (NOS2), as Arg2 (-/-) mice exhibited increased NOS2 levels in gastric macrophages, and NO can kill H. pylori. We now bred Arg2 (-/-) to Nos2 (-/-) mice, and infected them with H. pylori. Compared to wild-type mice, both Arg2 (-/-) and Arg2 (-/-) ;Nos2 (-/-) mice exhibited increased gastritis and decreased colonization, the latter indicating that the effect of ARG2 deletion on bacterial burden was not mediated by NO. While Arg2 (-/-) mice demonstrated enhanced M1 macrophage activation, Nos2 (-/-) and Arg2 (-/-) ;Nos2 (-/-) mice did not demonstrate these changes, but exhibited increased CXCL1 and CXCL2 responses. There was an increased expression of the Th1/Th17 cytokines, interferon gamma and interleukin 17, in gastric tissues and splenic T-cells from Arg2 (-/-), but not Nos2 (-/-) or Arg2 (-/-) ;Nos2 (-/-) mice. Gastric tissues from infected Arg2 (-/-) mice demonstrated increased expression of arginase 1, ornithine decarboxylase, adenosylmethionine decarboxylase 1, spermidine/spermine N (1)-acetyltransferase 1, and spermine oxidase, along with increased spermine levels. These data indicate that ARG2 deletion results in compensatory upregulation of gastric polyamine synthesis and catabolism during H. pylori infection, which may contribute to increased gastric inflammation and associated decreased bacterial load. Overall, the finding of this study is that ARG2 contributes to the immune evasion of H. pylori by restricting M1 macrophage activation and polyamine metabolism.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Mycobacterium tuberculosis TlyA Protein Negatively Regulates T Helper (Th) 1 and Th17 Differentiation and Promotes Tuberculosis Pathogenesis.
Rahman MA, Sobia P, Dwivedi VP, Bhawsar A, Singh DK, Sharma P, Moodley P, Van Kaer L, Bishai WR, Das G
(2015) J Biol Chem 290: 14407-17
MeSH Terms: Animals, Bacterial Proteins, Host-Pathogen Interactions, Interleukin-10, Interleukin-12, Lung, Macrophages, Mice, Inbred BALB C, Mice, Inbred C57BL, Mutation, Mycobacterium tuberculosis, Th1 Cells, Th17 Cells, Tuberculosis, Virulence Factors
Show Abstract · Added September 28, 2015
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an ancient pathogen and a major cause of death worldwide. Although various virulence factors of M. tuberculosis have been identified, its pathogenesis remains incompletely understood. TlyA is a virulence factor in several bacterial infections and is evolutionarily conserved in many Gram-positive bacteria, but its function in M. tuberculosis pathogenesis has not been elucidated. Here, we report that TlyA significantly contributes to the pathogenesis of M. tuberculosis. We show that a TlyA mutant M. tuberculosis strain induces increased IL-12 and reduced IL-1β and IL-10 cytokine responses, which sharply contrasts with the immune responses induced by wild type M. tuberculosis. Furthermore, compared with wild type M. tuberculosis, TlyA-deficient M. tuberculosis bacteria are more susceptible to autophagy in macrophages. Consequently, animals infected with the TlyA mutant M. tuberculosis organisms exhibited increased host-protective immune responses, reduced bacillary load, and increased survival compared with animals infected with wild type M. tuberculosis. Thus, M. tuberculosis employs TlyA as a host evasion factor, thereby contributing to its virulence.
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Heme oxygenase-1 dysregulates macrophage polarization and the immune response to Helicobacter pylori.
Gobert AP, Verriere T, Asim M, Barry DP, Piazuelo MB, de Sablet T, Delgado AG, Bravo LE, Correa P, Peek RM, Chaturvedi R, Wilson KT
(2014) J Immunol 193: 3013-22
MeSH Terms: Animals, Antigens, Bacterial, Bacterial Proteins, Cell Line, Enzyme Inhibitors, Gastric Mucosa, Gastritis, Helicobacter Infections, Helicobacter pylori, Heme Oxygenase-1, Humans, Imidazoles, Inflammation, Interleukin-10, MAP Kinase Signaling System, Macrophages, Membrane Proteins, Mice, Mice, Inbred C57BL, Mice, Knockout, NF-E2-Related Factor 2, Nitric Oxide Synthase Type II, Phagocytosis, Phosphorylation, Pyridines, Signal Transduction, Stomach, Th1 Cells, Th17 Cells, p38 Mitogen-Activated Protein Kinases
Show Abstract · Added January 20, 2015
Helicobacter pylori incites a futile inflammatory response, which is the key feature of its immunopathogenesis. This leads to the ability of this bacterial pathogen to survive in the stomach and cause peptic ulcers and gastric cancer. Myeloid cells recruited to the gastric mucosa during H. pylori infection have been directly implicated in the modulation of host defense against the bacterium and gastric inflammation. Heme oxygenase-1 (HO-1) is an inducible enzyme that exhibits anti-inflammatory functions. Our aim was to analyze the induction and role of HO-1 in macrophages during H. pylori infection. We now show that phosphorylation of the H. pylori virulence factor cytotoxin-associated gene A (CagA) in macrophages results in expression of hmox-1, the gene encoding HO-1, through p38/NF (erythroid-derived 2)-like 2 signaling. Blocking phagocytosis prevented CagA phosphorylation and HO-1 induction. The expression of HO-1 was also increased in gastric mononuclear cells of human patients and macrophages of mice infected with cagA(+) H. pylori strains. Genetic ablation of hmox-1 in H. pylori-infected mice increased histologic gastritis, which was associated with enhanced M1/Th1/Th17 responses, decreased regulatory macrophage (Mreg) response, and reduced H. pylori colonization. Gastric macrophages of H. pylori-infected mice and macrophages infected in vitro with this bacterium showed an M1/Mreg mixed polarization type; deletion of hmox-1 or inhibition of HO-1 in macrophages caused an increased M1 and a decrease of Mreg phenotype. These data highlight a mechanism by which H. pylori impairs the immune response and favors its own survival via activation of macrophage HO-1.
Copyright © 2014 by The American Association of Immunologists, Inc.
0 Communities
3 Members
0 Resources
30 MeSH Terms
STAT4 deficiency fails to induce lung Th2 or Th17 immunity following primary or secondary respiratory syncytial virus (RSV) challenge but enhances the lung RSV-specific CD8+ T cell immune response to secondary challenge.
Dulek DE, Newcomb DC, Toki S, Goliniewska K, Cephus J, Reiss S, Bates JT, Crowe JE, Boyd KL, Moore ML, Zhou W, Peebles RS
(2014) J Virol 88: 9655-72
MeSH Terms: Animals, CD8-Positive T-Lymphocytes, Disease Models, Animal, Female, Lung, Mice, Inbred BALB C, Mice, Knockout, Respiratory Syncytial Virus Infections, Respiratory Syncytial Viruses, STAT4 Transcription Factor, Th17 Cells, Th2 Cells
Show Abstract · Added January 20, 2015
UNLABELLED - Immune-mediated lung injury is a hallmark of lower respiratory tract illness caused by respiratory syncytial virus (RSV). STAT4 plays a critical role in CD4+ Th1 lineage differentiation and gamma interferon (IFN-γ) protein expression by CD4+ T cells. As CD4+ Th1 differentiation is associated with negative regulation of CD4+ Th2 and Th17 differentiation, we hypothesized that RSV infection of STAT4-/- mice would result in enhanced lung Th2 and Th17 inflammation and impaired lung Th1 inflammation compared to wild-type (WT) mice. We performed primary and secondary RSV challenges in WT and STAT4-/- mice and used STAT1-/- mice as a positive control for the development of RSV-specific lung Th2 and Th17 inflammation during primary challenge. Primary RSV challenge of STAT4-/- mice resulted in decreased T-bet and IFN-γ expression levels in CD4+ T cells compared to those of WT mice. Lung Th2 and Th17 inflammation did not develop in primary RSV-challenged STAT4-/- mice. Decreased IFN-γ expression by NK cells, CD4+ T cells, and CD8+ T cells was associated with attenuated weight loss and enhanced viral clearance with primary challenge in STAT4-/- mice compared to WT mice. Following secondary challenge, WT and STAT4-/- mice also did not develop lung Th2 or Th17 inflammation. In contrast to primary challenge, secondary RSV challenge of STAT4-/- mice resulted in enhanced weight loss, an increased lung IFN-γ expression level, and an increased lung RSV-specific CD8+ T cell response compared to those of WT mice. These data demonstrate that STAT4 regulates the RSV-specific CD8+ T cell response to secondary infection but does not independently regulate lung Th2 or Th17 immune responses to RSV challenge.
IMPORTANCE - STAT4 is a protein critical for both innate and adaptive immune responses to viral infection. Our results show that STAT4 regulates the immune response to primary and secondary challenge with RSV but does not restrain RSV-induced lung Th2 or Th17 immune responses. These findings suggest that STAT4 expression may influence lung immunity and severity of illness following primary and secondary RSV infections.
Copyright © 2014, American Society for Microbiology. All Rights Reserved.
0 Communities
2 Members
0 Resources
12 MeSH Terms