Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 416

Publication Record

Connections

Considerations for ultrasound exposure during transcranial MR acoustic radiation force imaging.
Phipps MA, Jonathan SV, Yang PF, Chaplin V, Chen LM, Grissom WA, Caskey CF
(2019) Sci Rep 9: 16235
MeSH Terms: Acoustics, Animals, Brain, Macaca, Magnetic Resonance Imaging, Safety, Skull, Temperature, Ultrasonic Waves
Show Abstract · Added March 3, 2020
The aim of this study was to improve the sensitivity of magnetic resonance-acoustic radiation force imaging (MR-ARFI) to minimize pressures required to localize focused ultrasound (FUS) beams, and to establish safe FUS localization parameters for ongoing ultrasound neuromodulation experiments in living non-human primates. We developed an optical tracking method to ensure that the MR-ARFI motion-encoding gradients (MEGs) were aligned with a single-element FUS transducer and that the imaged slice was prescribed at the optically tracked location of the acoustic focus. This method was validated in phantoms, which showed that MR-ARFI-derived displacement sensitivity is maximized when the MR-ARFI MEGs were maximally aligned with the FUS propagation direction. The method was then applied in vivo to acquire displacement images in two healthy macaque monkeys (M fascicularis) which showed the FUS beam within the brain. Temperature images were acquired using MR thermometry to provide an estimate of in vivo brain temperature changes during MR-ARFI, and pressure and thermal simulations of the acoustic pulses were performed using the k-Wave package which showed no significant heating at the focus of the FUS beam. The methods presented here will benefit the multitude of transcranial FUS applications as well as future human applications.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Cold exposure induces dynamic, heterogeneous alterations in human brown adipose tissue lipid content.
Coolbaugh CL, Damon BM, Bush EC, Welch EB, Towse TF
(2019) Sci Rep 9: 13600
MeSH Terms: Adipose Tissue, Brown, Adult, Cold Temperature, Fatty Acids, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Oxidation-Reduction, Young Adult
Show Abstract · Added March 3, 2020
Brown adipose tissue undergoes a dynamic, heterogeneous response to cold exposure that can include the simultaneous synthesis, uptake, and oxidation of fatty acids. The purpose of this work was to quantify these changes in brown adipose tissue lipid content (fat-signal fraction (FSF)) using fat-water magnetic resonance imaging during individualized cooling to 3 °C above a participant's shiver threshold. Eight healthy men completed familiarization, perception-based cooling, and MRI-cooling visits. FSF maps of the supraclavicular region were acquired in thermoneutrality and during cooling (59.5 ± 6.5 min). Brown adipose tissue regions of interest were defined, and voxels were grouped into FSF decades (0-10%, 10-20%…90-100%) according to their initial value. Brown adipose tissue contained a heterogeneous morphology of lipid content. Voxels with initial FSF values of 60-100% (P < 0.05) exhibited a significant decrease in FSF while a simultaneous increase in FSF occurred in voxels with initial FSF values of 0-30% (P < 0.05). These data suggest that in healthy young men, cold exposure elicits a dynamic and heterogeneous response in brown adipose tissue, with areas initially rich with lipid undergoing net lipid loss and areas of low initial lipid undergoing a net lipid accumulation.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Use of Electron Paramagnetic Resonance in Biological Samples at Ambient Temperature and 77 K.
Elajaili HB, Hernandez-Lagunas L, Ranguelova K, Dikalov S, Nozik-Grayck E
(2019) J Vis Exp :
MeSH Terms: Animals, Antimycin A, Bleomycin, Bronchoalveolar Lavage Fluid, Cattle, Cell Compartmentation, Electron Spin Resonance Spectroscopy, Lung, Mice, Mitochondria, Oxidation-Reduction, RAW 264.7 Cells, Superoxides, Temperature
Show Abstract · Added March 26, 2019
The accurate and specific detection of reactive oxygen species (ROS) in different cellular and tissue compartments is essential to the study of redox-regulated signaling in biological settings. Electron paramagnetic resonance spectroscopy (EPR) is the only direct method to assess free radicals unambiguously. Its advantage is that it detects physiologic levels of specific species with a high specificity, but it does require specialized technology, careful sample preparation, and appropriate controls to ensure accurate interpretation of the data. Cyclic hydroxylamine spin probes react selectively with superoxide or other radicals to generate a nitroxide signal that can be quantified by EPR spectroscopy. Cell-permeable spin probes and spin probes designed to accumulate rapidly in the mitochondria allow for the determination of superoxide concentration in different cellular compartments. In cultured cells, the use of cell permeable 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) along with and without cell-impermeable superoxide dismutase (SOD) pretreatment, or use of cell-permeable PEG-SOD, allows for the differentiation of extracellular from cytosolic superoxide. The mitochondrial 1-hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,2,6,6-tetramethyl-piperidine,1-hydroxy-2,2,6,6-tetramethyl-4-[2-(triphenylphosphonio)acetamido] piperidinium dichloride (mito-TEMPO-H) allows for measurement of mitochondrial ROS (predominantly superoxide). Spin probes and EPR spectroscopy can also be applied to in vivo models. Superoxide can be detected in extracellular fluids such as blood and alveolar fluid, as well as tissues such as lung tissue. Several methods are presented to process and store tissue for EPR measurements and deliver intravenous 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) spin probe in vivo. While measurements can be performed at room temperature, samples obtained from in vitro and in vivo models can also be stored at -80 °C and analyzed by EPR at 77 K. The samples can be stored in specialized tubing stable at -80 °C and run at 77 K to enable a practical, efficient, and reproducible method that facilitates storing and transferring samples.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Analgesic Effects of the GIRK Activator, VU0466551, Alone and in Combination with Morphine in Acute and Persistent Pain Models.
Abney KK, Bubser M, Du Y, Kozek KA, Bridges TM, Linsdley CW, Daniels JS, Morrison RD, Wickman K, Hopkins CR, Jones CK, Weaver CD
(2019) ACS Chem Neurosci 10: 1294-1299
MeSH Terms: Analgesics, Animals, Disease Models, Animal, Dose-Response Relationship, Drug, Drug Therapy, Combination, Formaldehyde, G Protein-Coupled Inwardly-Rectifying Potassium Channels, HEK293 Cells, Hot Temperature, Humans, Male, Mice, Inbred C57BL, Morphine, Pain, Phenylurea Compounds, Pyrazoles
Show Abstract · Added April 10, 2019
G protein-gated inwardly rectifying potassium (GIRK) channels are potassium-selective ion channels. As their name suggests, GIRK channels are effectors of G G protein-couple receptors whereby activation of these GPCRs leads to increased GIRK channel activity resulting in decreased cellular excitability. In this way, GIRK channels play diverse roles in physiology as effectors of G-coupled GPCRs: peacemaking in the heart rate, modulation of hormone secretion in endocrine tissues, as well as numerous CNS functions including learning, memory, and addiction/reward. Notably, GIRK channels are widely expressed along the spinothalamic tract and are positioned to play roles in both ascending and descending pain pathways. More notably, GIRK channel knockout and knock-down studies have found that GIRK channels play a major role in the action of opioid analgesics which act predominantly through G-coupled, opioid-activated GPCRs (e.g., μ-opioid receptors). Recent advances in GIRK channel pharmacology have led to the development of small molecules that directly and selectively activate GIRK channels. Based on research implicating the involvement of GIRK channels in pain pathways and as effectors of opioid analgesics, we conducted a study to determine whether direct pharmacological activation of GIRK channels could produce analgesic efficacy and/or augment the analgesic efficacy morphine, an opioid receptor agonist capable of activating μ-opioid receptors as well as other opioid receptor subtypes. In the present study, we demonstrate that the small-molecule GIRK activator, VU0466551, has analgesic effects when dosed alone or in combination with submaximally effective doses of morphine.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Women Undergoing Third Line Overactive Bladder Treatment Demonstrate Elevated Thermal Temporal Summation.
Reynolds WS, Kowalik C, Cohn J, Kaufman M, Wein A, Dmochowski R, Bruehl S
(2018) J Urol 200: 856-861
MeSH Terms: Adult, Aged, Botulinum Toxins, Type A, Central Nervous System Sensitization, Cohort Studies, Female, Follow-Up Studies, Hot Temperature, Humans, Linear Models, Lumbosacral Plexus, Middle Aged, Pain Perception, Retrospective Studies, Risk Assessment, Severity of Illness Index, Temporal Lobe, Transcutaneous Electric Nerve Stimulation, Treatment Outcome, Urinary Bladder, Overactive
Show Abstract · Added September 16, 2019
PURPOSE - We sought to determine whether women with overactive bladder who required third line therapy would demonstrate greater central sensitization, indexed by temporal summation to heat pain stimuli, than those with overactive bladder.
MATERIALS AND METHODS - We recruited 39 women with overactive bladder from the urology clinic who were planning to undergo interventional therapy for medication refractory overactive bladder with onabotulinumtoxinA bladder injection or sacral neuromodulation. We also recruited 55 women with overactive bladder who were newly seen at our urology clinic or who responded to advertisements for study participation. Participants underwent quantitative sensory testing using a thermal temporal summation protocol. The primary study outcome was the degree of temporal summation as reflected in the magnitude of positive slope of the line fit to the series of 10 stimuli at a 49C target temperature. We compared the degree of temporal summation between the study groups using linear regression.
RESULTS - Women in the group undergoing third line therapy showed significantly higher standardized temporal summation slopes than those in the nontreatment group (β = 1.57, 95% CI 0.18-2.96, t = 2.25, p = 0.027). On exploratory analyses a history of incontinence surgery or hysterectomy was associated with significantly greater temporal summation.
CONCLUSIONS - In this study the degree of temporal summation was elevated in women undergoing third line overactive bladder therapy compared to women with overactive bladder who were not undergoing that therapy. These findings suggest there may be pathophysiological differences, specifically in afferent nerve function and processing, in some women with overactive bladder.
Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Therapeutic endocannabinoid augmentation for mood and anxiety disorders: comparative profiling of FAAH, MAGL and dual inhibitors.
Bedse G, Bluett RJ, Patrick TA, Romness NK, Gaulden AD, Kingsley PJ, Plath N, Marnett LJ, Patel S
(2018) Transl Psychiatry 8: 92
MeSH Terms: Amidohydrolases, Animals, Anti-Anxiety Agents, Anxiety Disorders, Behavior, Animal, Benzodioxoles, Body Temperature, Brain, Carbamates, Endocannabinoids, Female, Locomotion, Male, Maze Learning, Mice, Inbred C57BL, Mice, Inbred ICR, Monoacylglycerol Lipases, Piperazines, Piperidines, Pyridines, Stress, Psychological
Show Abstract · Added April 12, 2019
Recent studies have demonstrated anxiolytic potential of pharmacological endocannabinoid (eCB) augmentation approaches in a variety of preclinical models. Pharmacological inhibition of endocannabinoid-degrading enzymes, such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), elicit promising anxiolytic effects in rodent models with limited adverse behavioral effects, however, the efficacy of dual FAAH/MAGL inhibition has not been investigated. In the present study, we compared the effects of FAAH (PF-3845), MAGL (JZL184) and dual FAAH/MAGL (JZL195) inhibitors on (1) anxiety-like behaviors under non-stressed and stressed conditions, (2) locomotor activity and body temperature, (3) lipid levels in the brain and (4) cognitive functions. Behavioral analysis showed that PF-3845 or JZL184, but not JZL195, was able to prevent restraint stress-induced anxiety in the light-dark box assay when administered before stress exposure. Moreover, JZL195 treatment was not able to reverse foot shock-induced anxiety-like behavior in the elevated zero maze or light-dark box. JZL195, but not PF-3845 or JZL184, decreased body temperature and increased anxiety-like behavior in the open-field test. Overall, JZL195 did not show anxiolytic efficacy and the effects of JZL184 were more robust than that of PF-3845 in the models examined. These results showed that increasing either endogenous AEA or 2-AG separately produces anti-anxiety effects under stressful conditions but the same effects are not obtained from simultaneously increasing both AEA and 2-AG.
0 Communities
1 Members
0 Resources
MeSH Terms
Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space.
Veri AO, Miao Z, Shapiro RS, Tebbji F, O'Meara TR, Kim SH, Colazo J, Tan K, Vyas VK, Whiteway M, Robbins N, Wong KH, Cowen LE
(2018) PLoS Genet 14: e1007270
MeSH Terms: Blotting, Western, Candida albicans, Chromatin Immunoprecipitation, Genes, Fungal, HSP90 Heat-Shock Proteins, Heat Shock Transcription Factors, Morphogenesis, Oligonucleotide Array Sequence Analysis, Reverse Transcriptase Polymerase Chain Reaction, Sequence Analysis, RNA, Temperature, Virulence
Show Abstract · Added November 7, 2019
The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition.
0 Communities
1 Members
0 Resources
MeSH Terms
Discrete Modules and Mesoscale Functional Circuits for Thermal Nociception within Primate S1 Cortex.
Yang PF, Wu R, Wu TL, Shi Z, Chen LM
(2018) J Neurosci 38: 1774-1787
MeSH Terms: Animals, Brain Mapping, Cold Temperature, Hot Temperature, Magnetic Resonance Imaging, Male, Nerve Net, Nociception, Pain, Physical Stimulation, Saimiri, Sensory Receptor Cells, Somatosensory Cortex, Touch, Vibration
Show Abstract · Added March 3, 2020
This study addresses one long-standing question of whether functional separations are preserved for somatosensory modalities of touch, heat, and cold nociception within primate primary somatosensory (S1) cortex. This information is critical for understanding how the nature of pain is represented in the primate brain. Using a combination of submillimeter-resolution fMRI and microelectrode local field potential (LFP) and spike recordings, we identified spatially segregated cortical zones for processing touch and nociceptive heat and cold stimuli in somatotopically appropriate areas 3a, 3b, 1, and 2 of S1 in male monkeys. The distances between zones were comparable (∼3.4 mm) across stimulus modalities (heat, cold, and tactile), indicating the existence of uniform, modality-specific modules. Stimulus-evoked LFP maps validated the fMRI maps in areas 3b and 1. Isolation of heat and cold nociceptive neurons from the fMRI zones confirmed the validity of using fMRI to probe nociceptive regions and circuits. Resting-state fMRI analysis revealed distinct intrinsic functional circuits among functionally related zones. We discovered distinct modular structures and networks for thermal nociception within S1 cortex, a finding that has significant implications for studying chronic pain syndromes and guiding the selection of neuromodulation targets for chronic pain management. Primate S1 subregions contain discrete heat and cold nociceptive modules. Modules with the same properties exhibit strong functional connection. Nociceptive fMRI response coincides with LFP and spike activities of nociceptive neurons. Functional separation of heat and cold pain is retained within primate S1 cortex.
Copyright © 2018 the authors 0270-6474/18/381774-14$15.00/0.
0 Communities
1 Members
0 Resources
MeSH Terms
Dietary Fatty Acids Control the Species of N-Acyl-Phosphatidylethanolamines Synthesized by Therapeutically Modified Bacteria in the Intestinal Tract.
Dosoky NS, Guo L, Chen Z, Feigley AV, Davies SS
(2018) ACS Infect Dis 4: 3-13
MeSH Terms: Acyltransferases, Animals, Bacteria, Biomarkers, Biosynthetic Pathways, Chromatography, Liquid, Diet, Fatty Acids, Gastrointestinal Microbiome, Lipid Metabolism, Liver, Male, Mice, Phosphatidylethanolamines, Tandem Mass Spectrometry, Temperature
Show Abstract · Added July 17, 2019
Engineering the gut microbiota to produce specific beneficial metabolites represents an important new potential strategy for treating chronic diseases. Our previous studies with bacteria engineered to produce N-acyl-phosphatidylethanolamines (NAPEs), the immediate precursors of the lipid satiety factors N-acyl-ethanolamides (NAEs), found that colonization of these bacteria inhibited development of obesity in C57BL/6J mice fed a high fat diet. Individual NAE species differ in their bioactivities. Intriguingly, colonization by our engineered bacteria resulted in increased hepatic N-stearoyl-ethanolamide (C18:0NAE) levels despite the apparent inability of these bacteria to biosynthesize its precursor N-stearoyl-phosphatidylethanolamine (C18:0NAPE) in vitro. We therefore sought to identify the factors that allowed C18:0NAPE biosynthesis by the engineered bacteria after colonization of the intestinal tract. We found that the species of NAPE biosynthesized by engineered bacteria depends on the species of dietary fatty acids available in the intestine, suggesting a simple method to fine-tune the therapeutic effects of modified microbiota.
1 Communities
1 Members
0 Resources
MeSH Terms
Dodecyl-β-melibioside Detergent Micelles as a Medium for Membrane Proteins.
Hutchison JM, Lu Z, Li GC, Travis B, Mittal R, Deatherage CL, Sanders CR
(2017) Biochemistry 56: 5481-5484
MeSH Terms: Amyloid beta-Protein Precursor, Detergents, Diacylglycerol Kinase, Disaccharides, Dynamic Light Scattering, Enzyme Stability, Escherichia coli Proteins, Glucosides, Glycolipids, Hot Temperature, Humans, Micelles, Myelin Proteins, Nuclear Magnetic Resonance, Biomolecular, Particle Size, Peptide Fragments, Protein Interaction Domains and Motifs, Protein Stability, Receptor, Notch1
Show Abstract · Added November 21, 2018
There remains a need for new non-ionic detergents that are suitable for use in biochemical and biophysical studies of membrane proteins. Here we explore the properties of n-dodecyl-β-melibioside (β-DDMB) micelles as a medium for membrane proteins. Melibiose is d-galactose-α(1→6)-d-glucose. Light scattering showed the β-DDMB micelle to be roughly 30 kDa smaller than micelles formed by the commonly used n-dodecyl-β-maltoside (β-DDM). β-DDMB stabilized diacylglycerol kinase (DAGK) against thermal inactivation. Moreover, activity assays conducted using aliquots of DAGK purified into β-DDMB yielded activities that were 40% higher than those of DAGK purified into β-DDM. β-DDMB yielded similar or better TROSY-HSQC NMR spectra for two single-pass membrane proteins and the tetraspan membrane protein peripheral myelin protein 22. β-DDMB appears be a useful addition to the toolbox of non-ionic detergents available for membrane protein research.
0 Communities
1 Members
0 Resources
MeSH Terms