Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 201

Publication Record

Connections

Interaction of α Carboxyl Terminus 1 Peptide With the Connexin 43 Carboxyl Terminus Preserves Left Ventricular Function After Ischemia-Reperfusion Injury.
Jiang J, Hoagland D, Palatinus JA, He H, Iyyathurai J, Jourdan LJ, Bultynck G, Wang Z, Zhang Z, Schey K, Poelzing S, McGowan FX, Gourdie RG
(2019) J Am Heart Assoc 8: e012385
MeSH Terms: Animals, Computer Simulation, Connexin 43, Mice, Microscopy, Confocal, Myocardial Contraction, Myocardial Reperfusion Injury, Peptide Fragments, Phosphorylation, Surface Plasmon Resonance, Tandem Mass Spectrometry, Ventricular Function, Left, Zonula Occludens-1 Protein
Show Abstract · Added March 24, 2020
Background α Carboxyl terminus 1 (αCT1) is a 25-amino acid therapeutic peptide incorporating the zonula occludens-1 (ZO-1)-binding domain of connexin 43 (Cx43) that is currently in phase 3 clinical testing on chronic wounds. In mice, we reported that αCT1 reduced arrhythmias after cardiac injury, accompanied by increases in protein kinase Cε phosphorylation of Cx43 at serine 368. Herein, we characterize detailed molecular mode of action of αCT1 in mitigating cardiac ischemia-reperfusion injury. Methods and Results To study αCT1-mediated increases in phosphorylation of Cx43 at serine 368, we undertook mass spectrometry of protein kinase Cε phosphorylation assay reactants. This indicated potential interaction between negatively charged residues in the αCT1 Asp-Asp-Leu-Glu-Iso sequence and lysines (Lys345, Lys346) in an α-helical sequence (helix 2) within the Cx43-CT. In silico modeling provided further support for this interaction, indicating that αCT1 may interact with both Cx43 and ZO-1. Using surface plasmon resonance, thermal shift, and phosphorylation assays, we characterized a series of αCT1 variants, identifying peptides that interacted with either ZO-1-postsynaptic density-95/disks large/zonula occludens-1 2 or Cx43-CT, but with limited or no ability to bind both molecules. Only peptides competent to interact with Cx43-CT, but not ZO-1-postsynaptic density-95/disks large/zonula occludens-1 2 alone, prompted increased pS368 phosphorylation. Moreover, in an ex vivo mouse model of ischemia-reperfusion injury, preischemic infusion only with those peptides competent to bind Cx43 preserved ventricular function after ischemia-reperfusion. Interestingly, a short 9-amino acid variant of αCT1 (αCT11) demonstrated potent cardioprotective effects when infused either before or after ischemic injury. Conclusions Interaction of αCT1 with the Cx43, but not ZO-1, is correlated with cardioprotection. Pharmacophores targeting Cx43-CT could provide a translational approach to preserving heart function after ischemic injury.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Multi-metal Restriction by Calprotectin Impacts De Novo Flavin Biosynthesis in Acinetobacter baumannii.
Wang J, Lonergan ZR, Gonzalez-Gutierrez G, Nairn BL, Maxwell CN, Zhang Y, Andreini C, Karty JA, Chazin WJ, Trinidad JC, Skaar EP, Giedroc DP
(2019) Cell Chem Biol 26: 745-755.e7
MeSH Terms: Acinetobacter baumannii, Bacterial Proteins, Chromatography, High Pressure Liquid, Flavins, Heat-Shock Proteins, Iron, Leukocyte L1 Antigen Complex, Metallochaperones, Proteome, Tandem Mass Spectrometry, Zinc
Show Abstract · Added March 26, 2019
Calprotectin (CP) inhibits bacterial viability through extracellular chelation of transition metals. However, how CP influences general metabolism remains largely unexplored. We show here that CP restricts bioavailable Zn and Fe to the pathogen Acinetobacter baumannii, inducing an extensive multi-metal perturbation of cellular physiology. Proteomics reveals severe metal starvation, and a strain lacking the candidate Zn metallochaperone ZigA possesses altered cellular abundance of multiple essential Zn-dependent enzymes and enzymes in de novo flavin biosynthesis. The ΔzigA strain exhibits decreased cellular flavin levels during metal starvation. Flavin mononucleotide provides regulation of this biosynthesis pathway, via a 3,4-dihydroxy-2-butanone 4-phosphate synthase (RibB) fusion protein, RibBX, and authentic RibB. We propose that RibBX ensures flavin sufficiency under CP-induced Fe limitation, allowing flavodoxins to substitute for Fe-ferredoxins as cell reductants. These studies elucidate adaptation to nutritional immunity and define an intersection between metallostasis and cellular metabolism in A. baumannii.
Copyright © 2019 Elsevier Ltd. All rights reserved.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Synthesis and Characterization of Site-Specific O -Alkylguanine DNA-Alkyl Transferase-Oligonucleotide Crosslinks.
Ghodke PP, Albertolle ME, Johnson KM, Guengerich FP
(2019) Curr Protoc Nucleic Acid Chem 76: e74
MeSH Terms: Catalysis, Catalytic Domain, Chromatography, Liquid, Copper, Cross-Linking Reagents, Escherichia coli, O(6)-Methylguanine-DNA Methyltransferase, Oligonucleotides, Polymerization, Tandem Mass Spectrometry, Templates, Genetic, Trypsin
Show Abstract · Added March 3, 2020
O -Alkylguanine DNA-alkyltransferase (AGT), a DNA repair protein, can form crosslinks with DNA. The AGT-DNA crosslinks are known to be mutagenic when AGT is heterologously expressed in Escherichia coli, as well as in mammalian cells. To understand the biological consequences, reliable access to AGT-oligonucleotide crosslinks is needed. This article describes the synthesis and characterization of site-specific AGT-oligonucleotide crosslinks at the N2-position of deoxyguanosine and N6-position of deoxyadenosine. We developed a post-oligomerization strategy for the synthesis of propargyl-modified oligonucleotides. Copper-catalyzed azide-alkyne cycloaddition was used as a key step to obtain the iodoacetamide-linked oligonucleotides, which serve as good electrophiles for the crosslinking reaction with cysteine-145 of the active site of AGT. Trypsinization of AGT and hydrolysis of oligonucleotides, combined with analysis by liquid chromatography-tandem mass spectrometry, was utilized to confirm the nucleobase-adducted peptides. This method provides a useful strategy for the synthesis and characterization of site-specific DNA-protein crosslinks, which can be further used to understand proteolytic degradation-coupled DNA repair mechanisms. © 2019 by John Wiley & Sons, Inc.
© 2019 John Wiley & Sons, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Quantitative Proteomic Analysis of Small and Large Extracellular Vesicles (EVs) Reveals Enrichment of Adhesion Proteins in Small EVs.
Jimenez L, Yu H, McKenzie AJ, Franklin JL, Patton JG, Liu Q, Weaver AM
(2019) J Proteome Res 18: 947-959
MeSH Terms: Cell Adhesion, Cell Adhesion Molecules, Cell Line, Tumor, Chromatography, Liquid, Exosomes, Extracellular Vesicles, Humans, Particle Size, Proteomics, Tandem Mass Spectrometry
Show Abstract · Added April 2, 2019
Extracellular vesicles (EVs) are important mediators of cell-cell communication due to their cargo content of proteins, lipids, and RNAs. We previously reported that small EVs (SEVs) called exosomes promote directed and random cell motility, invasion, and serum-independent growth. In contrast, larger EVs (LEVs) were not active in those assays, but might have unique functional properties. In order to identify protein cargos that may contribute to different functions of SEVs and LEVs, we used isobaric tags for relative and absolute quantitation (iTRAQ)-liquid chromatography (LC) tandem mass spectrometry (MS) on EVs isolated from a colon cancer cell line. Bioinformatics analyses revealed that SEVs are enriched in proteins associated with cell-cell junctions, cell-matrix adhesion, exosome biogenesis machinery, and various signaling pathways. In contrast, LEVs are enriched in proteins associated with ribosome and RNA biogenesis, processing, and metabolism. Western blot analysis of EVs purified from two different cancer cell types confirmed the enrichment of cell-matrix and cell-cell adhesion proteins in SEVs. Consistent with those data, we found that cells exhibit enhanced adhesion to surfaces coated with SEVs compared to an equal protein concentration of LEVs. These data suggest that a major function of SEVs is to promote cellular adhesion.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Proteomic Analysis of S-Palmitoylated Proteins in Ocular Lens Reveals Palmitoylation of AQP5 and MP20.
Wang Z, Schey KL
(2018) Invest Ophthalmol Vis Sci 59: 5648-5658
MeSH Terms: Animals, Aquaporin 5, Blotting, Western, Cattle, Chromatography, Liquid, Electrophoresis, Polyacrylamide Gel, Eye Proteins, Immunoblotting, Lens, Crystalline, Lipoylation, Membrane Proteins, Palmitates, Proteomics, Tandem Mass Spectrometry
Show Abstract · Added April 4, 2019
Purpose - The purpose of this study was to characterize the palmitoyl-proteome in lens fiber cells. S-palmitoylation is the most common form of protein S-acylation and the reversible nature of this modification functions as a molecular switch to regulate many biological processes. This modification could play important roles in regulating protein functions and protein-protein interactions in the lens.
Methods - The palmitoyl-proteome of bovine lens fiber cells was investigated by combining acyl-biotin exchange (ABE) chemistry and mass-spectrometry analysis. Due to the possibility of false-positive results from ABE experiment, a method was also developed for direct detection of palmitoylated peptides by mass spectrometry for validating palmitoylation of lens proteins MP20 and AQP5. Palmitoylation levels on AQP5 in different regions of the lens were quantified after iodoacetamide (IAA)-palmitate exchange.
Results - The ABE experiment identified 174 potential palmitoylated proteins. These proteins include 39 well-characterized palmitoylated proteins, 92 previously reported palmitoylated proteins in other tissues, and 43 newly identified potential palmitoylated proteins including two important transmembrane proteins in the lens, AQP5 and MP20. Further analysis by direct detection of palmitoylated peptides confirmed palmitoylation of AQP5 on C6 and palmitoylation of MP20 on C159. Palmitoylation of AQP5 was found to only occur in a narrow region of the inner lens cortex and does not occur in the lens epithelium, in the lens outer cortex, or in the lens nucleus.
Conclusions - AQP5 and MP20 are among 174 palmitoylated proteins found in bovine lens fiber cells. This modification to AQP5 and MP20 may play a role in their translocation from the cytoplasm to cell membranes during fiber cell differentiation.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Structural Characterization of Methylenedianiline Regioisomers by Ion Mobility-Mass Spectrometry and Tandem Mass Spectrometry. 4. 3-Ring and 4-Ring Isomers.
Crescentini TM, Stow SM, Forsythe JG, May JC, McLean JA, Hercules DM
(2018) Anal Chem 90: 14453-14461
MeSH Terms: Aniline Compounds, Ion Mobility Spectrometry, Stereoisomerism, Tandem Mass Spectrometry
Show Abstract · Added December 17, 2018
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) is used to characterize methylenedianiline (MDA) 3-ring and 4-ring species. Building on our previous MALDI-MS 2-ring MDA isomer study, here we compare 3-ring and 4-ring electrospray ionization (ESI) and MALDI results. In ESI, 3-ring and 4-ring MDAs each form a single [M + H] parent ion. However, in MALDI, each MDA multimer forms three unique precursor ions: [M + H], [M], and [M - H]. In this study, 3-ring and 4-ring MDA precursors are characterized to identify the unique fragment ions formed and their respective fragmentation pathways. In addition to the three possible precursors, the 3-ring and 4-ring species are higher-order oligomer precursors in polyurethane (PUR) production and thus provide additional insight into the polymeric behavior of these PUR hard block precursors. The combination of ion mobility-mass spectrometry (IM - MS) and tandem mass spectrometry (MS/MS) allow the structural characterization of these larger MDA multimers.
1 Communities
2 Members
0 Resources
4 MeSH Terms
Simplified LC/MS assay for the measurement of isolevuglandin protein adducts in plasma and tissue samples.
Yermalitsky VN, Matafonova E, Tallman K, Li Z, Zackert W, Roberts LJ, Amarnath V, Davies SS
(2019) Anal Biochem 566: 89-101
MeSH Terms: Aldehydes, Animals, Chromatography, Liquid, Ketones, Lipids, Mice, Mice, Inbred C57BL, Protein Processing, Post-Translational, Proteins, Tandem Mass Spectrometry
Show Abstract · Added July 17, 2019
Isolevuglandins (IsoLGs) are a family of highly reactive 4-ketoaldehydes formed by lipid peroxidation that modify the lysyl residues of cellular proteins. Modification of proteins by IsoLGs have been shown to contribute to disease processes such as the development of hypertension. Accurate quantitation of the extent of protein modification by IsoLGs is essential for understanding the mechanisms whereby these modifications contribute to disease and the efficacy of interventions designed to prevent this modification. The previously described LC/MS assay to quantitate IsoLG protein adducts was extremely labor-intensive and time consuming, and while it offered reasonably low intra-day variation for replicate samples, variation when replicate samples were processed on separate days was significant. These limitations significantly restricted utilization of this approach. We therefore performed a series of studies to optimize the assay. We now report a significantly simplified LC/MS assay for measurement of IsoLG protein adducts with increased sensitivity and lower intra-day and inter-day variability.
Copyright © 2018. Published by Elsevier Inc.
1 Communities
1 Members
0 Resources
10 MeSH Terms
Micro-Data-Independent Acquisition for High-Throughput Proteomics and Sensitive Peptide Mass Spectrum Identification.
Heaven MR, Cobbs AL, Nei YW, Gutierrez DB, Herren AW, Gunawardena HP, Caprioli RM, Norris JL
(2018) Anal Chem 90: 8905-8911
MeSH Terms: Algorithms, Chromatography, Liquid, Databases, Protein, Escherichia coli, Escherichia coli Proteins, HeLa Cells, High-Throughput Screening Assays, Humans, Peptides, Proteome, Proteomics, Software, Tandem Mass Spectrometry, Workflow
Show Abstract · Added August 27, 2018
State-of-the-art strategies for proteomics are not able to rapidly interrogate complex peptide mixtures in an untargeted manner with sensitive peptide and protein identification rates. We describe a data-independent acquisition (DIA) approach, microDIA (μDIA), that applies a novel tandem mass spectrometry (MS/MS) mass spectral deconvolution method to increase the specificity of tandem mass spectra acquired during proteomics experiments. Using the μDIA approach with a 10 min liquid chromatography gradient allowed detection of 3.1-fold more HeLa proteins than the results obtained from data-dependent acquisition (DDA) of the same samples. Additionally, we found the μDIA MS/MS deconvolution procedure is critical for resolving modified peptides with relatively small precursor mass shifts that cause the same peptide sequence in modified and unmodified forms to theoretically cofragment in the same raw MS/MS spectra. The μDIA workflow is implemented in the PROTALIZER software tool which fully automates tandem mass spectral deconvolution, queries every peptide with a library-free search algorithm against a user-defined protein database, and confidently identifies multiple peptides in a single tandem mass spectrum. We also benchmarked μDIA against DDA using a 90 min gradient analysis of HeLa and Escherichia coli peptides that were mixed in predefined quantitative ratios, and our results showed μDIA provided 24% more true positives at the same false positive rate.
0 Communities
2 Members
0 Resources
14 MeSH Terms
DehydroalanylGly, a new post translational modification resulting from the breakdown of glutathione.
Friedrich MG, Wang Z, Schey KL, Truscott RJW
(2018) Biochim Biophys Acta Gen Subj 1862: 907-913
MeSH Terms: Alanine, Amino Acid Sequence, Crystallins, Dipeptides, Glutathione, Glutathione Disulfide, Humans, Lens, Crystalline, Lysine, Middle Aged, Molecular Structure, Peptides, Protein Conformation, Protein Processing, Post-Translational, Proteins, Tandem Mass Spectrometry, Young Adult
Show Abstract · Added April 3, 2018
BACKGROUND - The human body contains numerous long-lived proteins which deteriorate with age, typically by racemisation, deamidation, crosslinking and truncation. Previously we elucidated one reaction responsible for age-related crosslinking, the spontaneous formation of dehydroalanine (DHA) intermediates from phosphoserine and cysteine. This resulted in non-disulphide covalent crosslinks. The current paper outlines a novel posttranslational modification (PTM) in human proteins, which involves the addition of dehydroalanylglycine (DHAGly) to Lys residues.
METHODS - Human lens digests were examined by mass spectrometry for the presence of (DHA)Gly (+144.0535 Da) adducts to Lys residues. Peptide model studies were undertaken to elucidate the mechanism of formation.
RESULTS - In the lens, this PTM was detected at 18 lysine sites in 7 proteins. Using model peptides, a pathway for its formation was found to involve initial formation of the glutathione degradation product, γ-Glu(DHA)Gly from oxidised glutathione (GSSG). Once the Lys adduct formed, the Glu residue was lost in a hydrolytic mechanism apparently catalysed by the ε-amino group of the Lys.
CONCLUSIONS - This discovery suggests that within cells, the functional groups of amino acids in proteins may be susceptible to modification by reactive metabolites derived from GSSG.
GENERAL SIGNIFICANCE - Our finding demonstrates a novel +144.0535 Da PTM arising from the breakdown of oxidised glutathione.
Copyright © 2018. Published by Elsevier B.V.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Dietary Fatty Acids Control the Species of N-Acyl-Phosphatidylethanolamines Synthesized by Therapeutically Modified Bacteria in the Intestinal Tract.
Dosoky NS, Guo L, Chen Z, Feigley AV, Davies SS
(2018) ACS Infect Dis 4: 3-13
MeSH Terms: Acyltransferases, Animals, Bacteria, Biomarkers, Biosynthetic Pathways, Chromatography, Liquid, Diet, Fatty Acids, Gastrointestinal Microbiome, Lipid Metabolism, Liver, Male, Mice, Phosphatidylethanolamines, Tandem Mass Spectrometry, Temperature
Show Abstract · Added July 17, 2019
Engineering the gut microbiota to produce specific beneficial metabolites represents an important new potential strategy for treating chronic diseases. Our previous studies with bacteria engineered to produce N-acyl-phosphatidylethanolamines (NAPEs), the immediate precursors of the lipid satiety factors N-acyl-ethanolamides (NAEs), found that colonization of these bacteria inhibited development of obesity in C57BL/6J mice fed a high fat diet. Individual NAE species differ in their bioactivities. Intriguingly, colonization by our engineered bacteria resulted in increased hepatic N-stearoyl-ethanolamide (C18:0NAE) levels despite the apparent inability of these bacteria to biosynthesize its precursor N-stearoyl-phosphatidylethanolamine (C18:0NAPE) in vitro. We therefore sought to identify the factors that allowed C18:0NAPE biosynthesis by the engineered bacteria after colonization of the intestinal tract. We found that the species of NAPE biosynthesized by engineered bacteria depends on the species of dietary fatty acids available in the intestine, suggesting a simple method to fine-tune the therapeutic effects of modified microbiota.
1 Communities
1 Members
0 Resources
MeSH Terms