Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 28

Publication Record


Circulating Tumor Cells: Diagnostic and Therapeutic Applications.
Lin E, Cao T, Nagrath S, King MR
(2018) Annu Rev Biomed Eng 20: 329-352
MeSH Terms: Animals, Cell Separation, Electrophoresis, Epithelial Cells, Filtration, Humans, Lab-On-A-Chip Devices, Lymph Nodes, Lymphatic Metastasis, Lymphatic System, Neoplasm Metastasis, Neoplasms, Neoplastic Cells, Circulating, Prognosis, TNF-Related Apoptosis-Inducing Ligand
Show Abstract · Added April 15, 2019
Metastasis contributes to poor prognosis in many types of cancer and is the leading cause of cancer-related deaths. Tumor cells metastasize to distant sites via the circulatory and lymphatic systems. In this review, we discuss the potential of circulating tumor cells for diagnosis and describe the experimental therapeutics that aim to target these disseminating cancer cells. We discuss the advantages and limitations of such strategies and how they may lead to the development of the next generation of antimetastasis treatments.
0 Communities
1 Members
0 Resources
15 MeSH Terms
ML327 induces apoptosis and sensitizes Ewing sarcoma cells to TNF-related apoptosis-inducing ligand.
Rellinger EJ, Padmanabhan C, Qiao J, Appert A, Waterson AG, Lindsley CW, Beauchamp RD, Chung DH
(2017) Biochem Biophys Res Commun 491: 463-468
MeSH Terms: Antigens, CD, Antineoplastic Agents, Apoptosis, Cadherins, Caspase 3, Cell Cycle, Cell Line, Tumor, Drug Synergism, Epithelial-Mesenchymal Transition, Gene Expression Regulation, Humans, Isoxazoles, Mesenchymal Stem Cells, Niacinamide, Poly(ADP-ribose) Polymerases, Sarcoma, Ewing, Signal Transduction, Small Molecule Libraries, TNF-Related Apoptosis-Inducing Ligand, Vimentin
Show Abstract · Added March 14, 2018
Ewing sarcomas are rare mesenchymal-derived bone and soft tissue tumors in children. Afflicted children with distant metastases have poor survival despite aggressive therapeutics. Epithelial-to-mesenchymal transition in epithelial carcinomas is associated with loss of E-cadherin and resistance to apoptosis. ML327 is a novel small molecule that we have previously shown to reverse epithelial-to-mesenchymal transition features in both epithelial and neural crest-derived cancers. Herein, we sought to evaluate the effects of ML327 on mesenchymal-derived Ewing sarcoma cells, hypothesizing that ML327 initiates growth arrest and sensitizes to TNF-related apoptosis-inducing ligand. ML327 induced protein expression changes, increased E-cadherin and decreased vimentin, consistent with partial induction of mesenchymal-to-epithelial transition in multiple Ewing Sarcoma cell lines (SK-N-MC, TC71, and ES-5838). Induction of epithelial features was associated with apoptosis, as demonstrated by PARP and Caspase 3 cleavage by immunoblotting. Cell cycle analysis validated these findings by marked induction of the subG cell population. In vitro combination treatment with TRAIL demonstrated additive induction of apoptotic markers. Taken together, these findings establish a rationale for further in vivo trials of ML327 in cells of mesenchymal origin both alone and in combination with TRAIL.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Genome-wide association studies in women of African ancestry identified 3q26.21 as a novel susceptibility locus for oestrogen receptor negative breast cancer.
Huo D, Feng Y, Haddad S, Zheng Y, Yao S, Han YJ, Ogundiran TO, Adebamowo C, Ojengbede O, Falusi AG, Zheng W, Blot W, Cai Q, Signorello L, John EM, Bernstein L, Hu JJ, Ziegler RG, Nyante S, Bandera EV, Ingles SA, Press MF, Deming SL, Rodriguez-Gil JL, Nathanson KL, Domchek SM, Rebbeck TR, Ruiz-Narváez EA, Sucheston-Campbell LE, Bensen JT, Simon MS, Hennis A, Nemesure B, Leske MC, Ambs S, Chen LS, Qian F, Gamazon ER, Lunetta KL, Cox NJ, Chanock SJ, Kolonel LN, Olshan AF, Ambrosone CB, Olopade OI, Palmer JR, Haiman CA
(2016) Hum Mol Genet 25: 4835-4846
MeSH Terms: African Americans, African Continental Ancestry Group, Alleles, Breast Neoplasms, Case-Control Studies, Chromosomes, Human, Pair 3, Female, Gene Frequency, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Polymorphism, Single Nucleotide, Receptors, Estrogen, Risk Factors, TNF-Related Apoptosis-Inducing Ligand
Show Abstract · Added April 13, 2017
Multiple breast cancer loci have been identified in previous genome-wide association studies, but they were mainly conducted in populations of European ancestry. Women of African ancestry are more likely to have young-onset and oestrogen receptor (ER) negative breast cancer for reasons that are unknown and understudied. To identify genetic risk factors for breast cancer in women of African descent, we conducted a meta-analysis of two genome-wide association studies of breast cancer; one study consists of 1,657 cases and 2,029 controls genotyped with Illumina’s HumanOmni2.5 BeadChip and the other study included 3,016 cases and 2,745 controls genotyped using Illumina Human1M-Duo BeadChip. The top 18,376 single nucleotide polymorphisms (SNP) from the meta-analysis were replicated in the third study that consists of 1,984 African Americans cases and 2,939 controls. We found that SNP rs13074711, 26.5 Kb upstream of TNFSF10 at 3q26.21, was significantly associated with risk of oestrogen receptor (ER)-negative breast cancer (odds ratio [OR]=1.29, 95% CI: 1.18-1.40; P = 1.8 × 10 − 8). Functional annotations suggest that the TNFSF10 gene may be involved in breast cancer aetiology, but further functional experiments are needed. In addition, we confirmed SNP rs10069690 was the best indicator for ER-negative breast cancer at 5p15.33 (OR = 1.30; P = 2.4 × 10 − 10) and identified rs12998806 as the best indicator for ER-positive breast cancer at 2q35 (OR = 1.34; P = 2.2 × 10 − 8) for women of African ancestry. These findings demonstrated additional susceptibility alleles for breast cancer can be revealed in diverse populations and have important public health implications in building race/ethnicity-specific risk prediction model for breast cancer.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Agonists of the TRAIL Death Receptor DR5 Sensitize Intestinal Stem Cells to Chemotherapy-Induced Cell Death and Trigger Gastrointestinal Toxicity.
Finnberg NK, Gokare P, Navaraj A, Lang Kuhs KA, Cerniglia G, Yagita H, Takeda K, Motoyama N, El-Deiry WS
(2016) Cancer Res 76: 700-12
MeSH Terms: Animals, Antibodies, Monoclonal, Apoptosis, Cell Death, Cell Line, Tumor, DNA Damage, Female, Gastrointestinal Diseases, Humans, Intestinal Mucosa, Intestines, Male, Mice, Mice, Transgenic, Receptors, TNF-Related Apoptosis-Inducing Ligand, Stem Cells
Show Abstract · Added August 15, 2017
The combination of TRAIL death receptor agonists and radiochemotherapy to treat advanced cancers continues to be investigated in clinical trials. We previously showed that normal cells with a functional DNA damage response (DDR) upregulate the expression of death-inducing receptor DR5/TRAILR2/TNFRSF10B in a p53-dependent manner that sensitizes them to treatment with DR5 agonists. However, it is unclear if targeting DR5 selectively sensitizes cancer cells to agonist treatment following exposure to DNA-damaging chemotherapy, and to what extent normal tissues are targeted. Here, we show that the combined administration of the DR5 agonistic monoclonal antibody (mAb) and chemotherapy to wild-type mice triggered synergistic gastrointestinal toxicities (GIT) that were associated with the death of Lgr5(+) crypt base columnar stem cells in a p53- and DR5-dependent manner. Furthermore, we confirmed that normal human epithelial cells treated with the human DR5-agonistic mAb and chemotherapeutic agents were also greatly sensitized to cell death. Interestingly, our data also indicated that genetic or pharmacologic targeting of Chk2 may counteract GIT without negatively affecting the antitumor responses of combined DR5 agonist/chemotherapy treatment, further linking the DDR to TRAIL death receptor signaling in normal cells. In conclusion, the combination of DR5-targeting agonistic mAbs with DNA damaging chemotherapy may pose a risk of developing toxicity-induced conditions, and the effects of mAb-based strategies on the dose-limiting toxicity of chemotherapy must be considered when establishing new combination therapies.
©2015 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Combining an Aurora Kinase Inhibitor and a Death Receptor Ligand/Agonist Antibody Triggers Apoptosis in Melanoma Cells and Prevents Tumor Growth in Preclinical Mouse Models.
Liu Y, Hawkins OE, Vilgelm AE, Pawlikowski JS, Ecsedy JA, Sosman JA, Kelley MC, Richmond A
(2015) Clin Cancer Res 21: 5338-48
MeSH Terms: Animals, Antibodies, Monoclonal, Antineoplastic Agents, Apoptosis, Aurora Kinases, Azepines, Caspases, Cell Line, Tumor, Cellular Senescence, Disease Models, Animal, Drug Evaluation, Preclinical, Female, Humans, Melanoma, Mice, Protein Kinase Inhibitors, Pyrimidines, Receptors, Death Domain, Receptors, TNF-Related Apoptosis-Inducing Ligand, Receptors, Tumor Necrosis Factor, Member 10c, Signal Transduction, TNF-Related Apoptosis-Inducing Ligand, Tumor Suppressor Protein p53, Xenograft Model Antitumor Assays
Show Abstract · Added August 21, 2015
PURPOSE - Preclinical studies show that inhibition of aurora kinases in melanoma tumors induces senescence and reduces tumor growth, but does not cause tumor regression. Additional preclinical models are needed to identify agents that will synergize with aurora kinase inhibitors to induce tumor regression.
EXPERIMENTAL DESIGN - We combined treatment with an aurora kinase A inhibitor, MLN8237, with agents that activate death receptors (Apo2L/TRAIL or death receptor 5 agonists) and monitored the ability of this treatment to induce tumor apoptosis and melanoma tumor regression using human cell lines and patient-derived xenograft (PDX) mouse models.
RESULTS - We found that this combined treatment led to apoptosis and markedly reduced cell viability. Mechanistic analysis showed that the induction of tumor cell senescence in response to the AURKA inhibitor resulted in a decreased display of Apo2L/TRAIL decoy receptors and increased display of one Apo2L/TRAIL receptor (death receptor 5), resulting in enhanced response to death receptor ligand/agonists. When death receptors were activated in senescent tumor cells, both intrinsic and extrinsic apoptotic pathways were induced independent of BRAF, NRAS, or p53 mutation status. Senescent tumor cells exhibited BID-mediated mitochondrial depolarization in response to Apo2L/TRAIL treatment. In addition, senescent tumor cells had a lower apoptotic threshold due to decreased XIAP and survivin expression. Melanoma tumor xenografts of one human cell line and one PDX displayed total blockage of tumor growth when treated with MLN8237 combined with DR5 agonist antibody.
CONCLUSIONS - These findings provide a strong rationale for combining senescence-inducing therapeutics with death receptor agonists for improved cancer treatment.
©2015 American Association for Cancer Research.
2 Communities
3 Members
0 Resources
24 MeSH Terms
TRAIL-Based High Throughput Screening Reveals a Link between TRAIL-Mediated Apoptosis and Glutathione Reductase, a Key Component of Oxidative Stress Response.
Rozanov D, Cheltsov A, Sergienko E, Vasile S, Golubkov V, Aleshin AE, Levin T, Traer E, Hann B, Freimuth J, Alexeev N, Alekseyev MA, Budko SP, Bächinger HP, Spellman P
(2015) PLoS One 10: e0129566
MeSH Terms: Animals, Antineoplastic Agents, Apoptosis, Cell Line, Tumor, Dose-Response Relationship, Drug, Doxorubicin, Drug Discovery, Glutathione, Glutathione Reductase, High-Throughput Screening Assays, Humans, Mice, Oxidative Stress, Reactive Oxygen Species, Small Molecule Libraries, TNF-Related Apoptosis-Inducing Ligand
Show Abstract · Added November 2, 2017
A high throughput screen for compounds that induce TRAIL-mediated apoptosis identified ML100 as an active chemical probe, which potentiated TRAIL activity in prostate carcinoma PPC-1 and melanoma MDA-MB-435 cells. Follow-up in silico modeling and profiling in cell-based assays allowed us to identify NSC130362, pharmacophore analog of ML100 that induced 65-95% cytotoxicity in cancer cells and did not affect the viability of human primary hepatocytes. In agreement with the activation of the apoptotic pathway, both ML100 and NSC130362 synergistically with TRAIL induced caspase-3/7 activity in MDA-MB-435 cells. Subsequent affinity chromatography and inhibition studies convincingly demonstrated that glutathione reductase (GSR), a key component of the oxidative stress response, is a target of NSC130362. In accordance with the role of GSR in the TRAIL pathway, GSR gene silencing potentiated TRAIL activity in MDA-MB-435 cells but not in human hepatocytes. Inhibition of GSR activity resulted in the induction of oxidative stress, as was evidenced by an increase in intracellular reactive oxygen species (ROS) and peroxidation of mitochondrial membrane after NSC130362 treatment in MDA-MB-435 cells but not in human hepatocytes. The antioxidant reduced glutathione (GSH) fully protected MDA-MB-435 cells from cell lysis induced by NSC130362 and TRAIL, thereby further confirming the interplay between GSR and TRAIL. As a consequence of activation of oxidative stress, combined treatment of different oxidative stress inducers and NSC130362 promoted cell death in a variety of cancer cells but not in hepatocytes in cell-based assays and in in vivo, in a mouse tumor xenograft model.
0 Communities
1 Members
0 Resources
16 MeSH Terms
mTOR inhibitors induce apoptosis in colon cancer cells via CHOP-dependent DR5 induction on 4E-BP1 dephosphorylation.
He K, Zheng X, Li M, Zhang L, Yu J
(2016) Oncogene 35: 148-57
MeSH Terms: Adaptor Proteins, Signal Transducing, Animals, Antineoplastic Agents, Apoptosis, Cell Line, Tumor, Colonic Neoplasms, Everolimus, Female, Humans, Mice, Nude, Phosphoproteins, Phosphorylation, Protein Kinase Inhibitors, Receptors, TNF-Related Apoptosis-Inducing Ligand, Sirolimus, TOR Serine-Threonine Kinases, Transcription Factor CHOP, Xenograft Model Antitumor Assays
Show Abstract · Added July 28, 2015
The mammalian target of rapamycin (mTOR) is commonly activated in colon cancer. mTOR complex 1 (mTORC1) is a major downstream target of the PI3K/ATK pathway and activates protein synthesis by phosphorylating key regulators of messenger RNA translation and ribosome synthesis. Rapamycin analogs Everolimus and Temsirolimus are non-ATP-competitive mTORC1 inhibitors, and suppress proliferation and tumor angiogenesis and invasion. We now show that apoptosis plays a key role in their anti-tumor activities in colon cancer cells and xenografts through the DR5, FADD and caspase-8 axis, and is strongly enhanced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and 5-fluorouracil. The induction of DR5 by rapalogs is mediated by the ER stress regulator and transcription factor CHOP, but not the tumor suppressor p53, on rapid and sustained inhibition of 4E-BP1 phosphorylation, and attenuated by eIF4E expression. ATP-competitive mTOR/PI3K inhibitors also promote DR5 induction and FADD-dependent apoptosis in colon cancer cells. These results establish activation of ER stress and the death receptor pathway as a novel anticancer mechanism of mTOR inhibitors.
0 Communities
1 Members
0 Resources
18 MeSH Terms
TRAIL-producing NK cells contribute to liver injury and related fibrogenesis in the context of GNMT deficiency.
Fernández-Álvarez S, Gutiérrez-de Juan V, Zubiete-Franco I, Barbier-Torres L, Lahoz A, Parés A, Luka Z, Wagner C, Lu SC, Mato JM, Martínez-Chantar ML, Beraza N
(2015) Lab Invest 95: 223-36
MeSH Terms: Amino Acid Metabolism, Inborn Errors, Animals, Bile Ducts, Blotting, Western, End Stage Liver Disease, Flow Cytometry, Glycine N-Methyltransferase, Humans, Immunohistochemistry, Killer Cells, Natural, Ligation, Mice, Mice, Knockout, Receptors, TNF-Related Apoptosis-Inducing Ligand, TNF-Related Apoptosis-Inducing Ligand
Show Abstract · Added January 20, 2015
Glycine-N-methyltransferase (GNMT) is essential to preserve liver homeostasis. Cirrhotic patients show low expression of GNMT that is absent in hepatocellular carcinoma (HCC) samples. Accordingly, GNMT deficiency in mice leads to steatohepatitis, fibrosis, cirrhosis, and HCC. Lack of GNMT triggers NK cell activation in GNMT(-/-) mice and depletion of TRAIL significantly attenuates acute liver injury and inflammation in these animals. Chronic inflammation leads to fibrogenesis, further contributing to the progression of chronic liver injury regardless of the etiology. The aim of our study is to elucidate the implication of TRAIL-producing NK cells in the progression of chronic liver injury and fibrogenesis. For this we generated double TRAIL(-/-)/GNMT(-/-) mice in which we found that TRAIL deficiency efficiently protected the liver against chronic liver injury and fibrogenesis in the context of GNMT deficiency. Next, to better delineate the implication of TRAIL-producing NK cells during fibrogenesis we performed bile duct ligation (BDL) to GNMT(-/-) and TRAIL(-/-)/GNMT(-/-) mice. In GNMT(-/-) mice, exacerbated fibrogenic response after BDL concurred with NK1.1(+) cell activation. Importantly, specific inhibition of TRAIL-producing NK cells efficiently protected GNMT(-/-) mice from BDL-induced liver injury and fibrogenesis. Finally, TRAIL(-/-)/GNMT(-/-) mice showed significantly less fibrosis after BDL than GNMT(-/-) mice further underlining the relevance of the TRAIL/DR5 axis in mediating liver injury and fibrogenesis in GNMT(-/-) mice. Finally, in vivo silencing of DR5 efficiently protected GNMT(-/-) mice from BDL-liver injury and fibrogenesis, overall underscoring the key role of the TRAIL/DR5 axis in promoting fibrogenesis in the context of absence of GNMT. Overall, our work demonstrates that TRAIL-producing NK cells actively contribute to liver injury and further fibrogenesis in the pathological context of GNMT deficiency, a molecular scenario characteristic of chronic human liver disease.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Anti-leukemic potency of piggyBac-mediated CD19-specific T cells against refractory Philadelphia chromosome-positive acute lymphoblastic leukemia.
Saito S, Nakazawa Y, Sueki A, Matsuda K, Tanaka M, Yanagisawa R, Maeda Y, Sato Y, Okabe S, Inukai T, Sugita K, Wilson MH, Rooney CM, Koike K
(2014) Cytotherapy 16: 1257-69
MeSH Terms: Antigens, CD19, Cancer Vaccines, Cell Line, Tumor, Cell Proliferation, Culture Media, Serum-Free, Cytotoxicity, Immunologic, DNA Transposable Elements, Drug Resistance, Neoplasm, Genetic Engineering, Genetic Vectors, Humans, Immunotherapy, Adoptive, Interleukin-15, Interleukin-2, Leukemia, Myelogenous, Chronic, BCR-ABL Positive, Mutation, Protein Kinase Inhibitors, Receptors, Antigen, T-Cell, Recombinant Fusion Proteins, T-Lymphocytes, TNF-Related Apoptosis-Inducing Ligand, Up-Regulation
Show Abstract · Added October 28, 2014
BACKGROUND AIMS - To develop a treatment option for Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+)ALL) resistant to tyrosine kinase inhibitors (TKIs), we evaluated the anti-leukemic activity of T cells non-virally engineered to express a CD19-specific chimeric antigen receptor (CAR).
METHODS - A CD19.CAR gene was delivered into mononuclear cells from 10 mL of blood of healthy donors through the use of piggyBac-transposons and the 4-D Nucleofector System. Nucleofected cells were stimulated with CD3/CD28 antibodies, magnetically selected for the CD19.CAR, and cultured in interleukin-15-containing serum-free medium with autologous feeder cells for 21 days. To evaluate their cytotoxic potency, we co-cultured CAR T cells with seven Ph(+)ALL cell lines including three TKI-resistant (T315I-mutated) lines at an effector-to-target ratio of 1:5 or lower without cytokines.
RESULTS - We obtained ∼1.3 × 10(8) CAR T cells (CD4(+), 25.4%; CD8(+), 71.3%), co-expressing CD45RA and CCR7 up to ∼80%. After 7-day co-culture, CAR T cells eradicated all tumor cells at the 1:5 and 1:10 ratios and substantially reduced tumor cell numbers at the 1:50 ratio. Kinetic analysis revealed up to 37-fold proliferation of CAR T cells during a 20-day culture period in the presence of tumor cells. On exposure to tumor cells, CAR T cells transiently and reproducibly upregulated the expression of transgene as well as tumor necrosis factor-related apoptosis-inducing ligand and interleukin-2.
CONCLUSIONS - We generated a clinically relevant number of CAR T cells from 10 mL of blood through the use of piggyBac-transposons, a 4D-Nulcleofector, and serum/xeno/tumor cell/virus-free culture system. CAR T cells exhibited marked cytotoxicity against Ph(+)ALL regardless of T315I mutation. PiggyBac-mediated CD19-specific T-cell therapy may provide an effective, inexpensive and safe option for drug-resistant Ph(+)ALL.
Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Resistance to TRAIL is mediated by DARPP-32 in gastric cancer.
Belkhiri A, Zhu S, Chen Z, Soutto M, El-Rifai W
(2012) Clin Cancer Res 18: 3889-900
MeSH Terms: Apoptosis, CASP8 and FADD-Like Apoptosis Regulating Protein, Caspases, Cell Line, Tumor, Cell Transformation, Neoplastic, Dopamine and cAMP-Regulated Phosphoprotein 32, Gene Expression Regulation, Neoplastic, Humans, NF-kappa B, Signal Transduction, Stomach Neoplasms, TNF-Related Apoptosis-Inducing Ligand, bcl-X Protein
Show Abstract · Added September 3, 2013
PURPOSE - Dopamine and cAMP-regulated phosphoprotein, Mr 32,000 (DARPP-32), is overexpressed during the gastric carcinogenesis cascade. Here, we investigated the role of DARPP-32 in promoting resistance to treatment with TRAIL.
EXPERIMENTAL DESIGN - In vitro cell models including stable expression and knockdown of DARPP-32 were used. The role of DARPP-32 in regulating TRAIL-dependent apoptosis was evaluated by clonogenic survival assay, Annexin V staining, immunofluorescence, quantitative reverse transcriptase PCR, Western blot, and luciferase reporter assays.
RESULTS - Stable expression of DARPP-32 in MKN-28 cells enhanced cell survival and suppressed TRAIL-induced cytochrome c release and activation of caspase-8, -9, and -3. Conversely, short hairpin RNA-mediated knockdown of endogenous DARPP-32 sensitized the resistant MKN-45 cells to TRAIL-induced apoptosis and enhanced TRAIL-mediated activation of caspase-8, -9, and -3. DARPP-32 induced BCL-xL expression through activation of Src/STAT3 signaling, and treatment with the Src-specific inhibitor PP1 abrogated DARPP-32-dependent BCL-xL upregulation and cell survival in MKN-28 cells. The TRAIL treatment induced caspase-dependent cleavage of NF-κBp65 protein; this cleavage was prevented by DARPP-32, thus maintaining NF-κB activity and the expression of its target, FLIP(S) protein. This suggests that upregulation of BCL-xL could play a possible role in blocking the mitochondria intrinsic apoptosis pathway, whereas the DARPP-32 effect on the NF-κB/FLIP(S) axis could serve as an additional negative feedback loop that blocks TRAIL-induced activation of caspase-8.
CONCLUSION - Our findings uncover a novel mechanism of TRAIL resistance mediated by DARPP-32, whereby it inhibits the intrinsic apoptosis pathway through upregulation of BCL-xL, and the extrinsic apoptosis pathway through the NF-κB/FLIP(S) axis.
0 Communities
2 Members
0 Resources
13 MeSH Terms